
Giltsu Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2376742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>ABI3</scp> ―and <scp>PIF1</scp> â€mediated regulation of <scp> <i>GIG1</i> </scp> enhances seed germination by detoxification of methylglyoxal in Arabidopsis. Plant Journal, 2022, , .	5.7	4
2	EARLY STARVATION 1 Is a Functionally Conserved Protein Promoting Gravitropic Responses in Plants by Forming Starch Granules. Frontiers in Plant Science, 2021, 12, 628948.	3.6	8
3	Identification of three groups of ginsenoside biosynthetic UDP-glycosyltransferases from Gynostemma pentaphyllum. Plant Science, 2021, 313, 111069.	3.6	12
4	PHYTOCHROME INTERACTING FACTOR8 Inhibits Phytochrome A-Mediated Far-Red Light Responses in Arabidopsis. Plant Cell, 2020, 32, 186-205.	6.6	69
5	The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nature Communications, 2020, 11, 1053.	12.8	72
6	High Ambient Temperature Accelerates Leaf Senescence via PHYTOCHROME-INTERACTING FACTOR 4 and 5 in. Molecules and Cells, 2020, 43, 645-661.	2.6	22
7	Phytochrome Regulation of Seed Germination. Methods in Molecular Biology, 2019, 2026, 149-156.	0.9	6
8	Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 2019, 37, 107394.	11.7	114
9	Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses across a Wide Range of Light Conditions. Plant Cell, 2018, 30, 1277-1292.	6.6	81
10	Phytochrome-interacting factor from Arabidopsis to liverwort. Current Opinion in Plant Biology, 2017, 35, 54-60.	7.1	104
11	Phytochrome and Ethylene Signaling Integration in Arabidopsis Occurs via the Transcriptional Regulation of Genes Co-targeted by PIFs and EIN3. Frontiers in Plant Science, 2016, 7, 1055.	3.6	25
12	Epidermal Phytochrome B Inhibits Hypocotyl Negative Gravitropism Non-Cell-Autonomously. Plant Cell, 2016, 28, 2770-2785.	6.6	39
13	PIF1 Regulates Plastid Development by Repressing Photosynthetic Genes in the Endodermis. Molecular Plant, 2016, 9, 1415-1427.	8.3	27
14	PIF1-Interacting Transcription Factors and Their Binding Sequence Elements Determine the in Vivo Targeting Sites of PIF1. Plant Cell, 2016, 28, 1388-1405.	6.6	68
15	The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis. Plant Cell, 2015, 27, 2301-2313.	6.6	32
16	The Arabidopsis RING Domain Protein BOI Inhibits Flowering via CO-dependent and CO-independent Mechanisms. Molecular Plant, 2015, 8, 1725-1736.	8.3	23
17	A histone methyltransferase inhibits seed germination by increasing <i>PIF1</i> Â <scp>mRNA</scp> expression in imbibed seeds. Plant Journal, 2014, 78, 282-293.	5.7	25
18	ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs Interact to Activate the Expression of <i>SOMNUS</i> and Other High-Temperature-Inducible Genes in Imbibed Seeds in <i>Arabidopsis</i> Â. Plant Cell, 2014, 25, 4863-4878.	6.6	191

GILTSU CHOI

#	Article	IF	CITATIONS
19	Two Ginseng UDP-Glycosyltransferases Synthesize Ginsenoside Rg3 and Rd. Plant and Cell Physiology, 2014, 55, 2177-2188.	3.1	146
20	Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications, 2014, 5, 4636.	12.8	375
21	Phytochrome-Interacting Factors Have Both Shared and Distinct Biological Roles. Molecules and Cells, 2013, 35, 371-380.	2.6	74
22	DELLA Proteins and Their Interacting RING Finger Proteins Repress Gibberellin Responses by Binding to the Promoters of a Subset of Gibberellin-Responsive Genes in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 927-943.	6.6	145
23	Interactions between HLH and bHLH Factors Modulate Light-Regulated Plant Development. Molecular Plant, 2012, 5, 688-697.	8.3	146
24	Phytochrome B inhibits binding of phytochromeâ€interacting factors to their target promoters. Plant Journal, 2012, 72, 537-546.	5.7	151
25	ABI3 and PIL5 Collaboratively Activate the Expression of <i>SOMNUS</i> by Directly Binding to Its Promoter in Imbibed <i>Arabidopsis</i> Seeds. Plant Cell, 2011, 23, 1404-1415.	6.6	126
26	Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1729-1734.	7.1	88
27	Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7660-7665.	7.1	412
28	Genome-Wide Analysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during Seed Germination in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 403-419.	6.6	336
29	Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 2009, 69, 463-472.	3.9	290
30	Decoding of Light Signals by Plant Phytochromes and Their Interacting Proteins. Annual Review of Plant Biology, 2008, 59, 281-311.	18.7	412
31	SOMNUS, a CCCH-Type Zinc Finger Protein in <i>Arabidopsis</i> , Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5. Plant Cell, 2008, 20, 1260-1277.	6.6	282
32	PIL5, a Phytochrome-Interacting bHLH Protein, Regulates Gibberellin Responsiveness by Binding Directly to the GAI and RGA Promoters in Arabidopsis Seeds. Plant Cell, 2007, 19, 1192-1208.	6.6	405
33	PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant Journal, 2007, 49, 981-994.	5.7	354
34	Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant Journal, 2006, 47, 124-139.	5.7	346
35	Degradation of Phytochrome Interacting Factor 3 in Phytochrome-Mediated Light Signaling. Plant and Cell Physiology, 2004, 45, 968-975.	3.1	193
36	PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thaliana Â[W]. Plant Cell, 2004, 16, 3045-3058.	6.6	409

#	Article	IF	CITATIONS
37	Functional Characterization of Phytochrome Interacting Factor 3 in Phytochrome-Mediated Light Signal Transduction. Plant Cell, 2003, 15, 2399-2407.	6.6	280