
Betty C A M Van Esch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2376222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European Journal of Pharmacology, 2018, 831, 52-59.	3.5	341
2	The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Frontiers in Pharmacology, 2018, 9, 533.	3.5	181
3	Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients, 2021, 13, 724.	4.1	82
4	Oral tolerance induction by partially hydrolyzed whey protein in mice is associated with enhanced numbers of Foxp3 ⁺ regulatory Tâ€cells in the mesenteric lymph nodes. Pediatric Allergy and Immunology, 2011, 22, 820-826.	2.6	69
5	Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Frontiers in Pharmacology, 2018, 9, 233.	3.5	59
6	The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Frontiers in Immunology, 2020, 11, 2141.	4.8	57
7	CTLA4-IgG Reverses Asthma Manifestations in a Mild but Not in a More "Severe―Ongoing Murine Model. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 751-760.	2.9	56
8	Acute Allergic Skin Reactions and Intestinal Contractility Changes in Mice Orally Sensitized against Casein or Whey. International Archives of Allergy and Immunology, 2008, 147, 125-134.	2.1	56
9	Contribution of IgE and immunoglobulin free light chain in the allergic reaction to cow's milk proteins. Journal of Allergy and Clinical Immunology, 2010, 125, 1308-1314.	2.9	52
10	Raw cow's milk consumption and allergic diseases – The potential role of bioactive whey proteins. European Journal of Pharmacology, 2019, 843, 55-65.	3.5	49
11	Allergen Immunotherapy Inhibits Airway Eosinophilia and Hyperresponsiveness Associated with Decreased IL-4 Production by Lymphocytes in a Murine Model of Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 622-628.	2.9	46
12	Raw Cow's Milk Prevents the Development of Airway Inflammation in a Murine House Dust Mite-Induced Asthma Model. Frontiers in Immunology, 2017, 8, 1045.	4.8	43
13	Milk processing increases the allergenicity of cow's milk—Preclinical evidence supported by a human proofâ€ofâ€concept provocation pilot. Clinical and Experimental Allergy, 2019, 49, 1013-1025.	2.9	42
14	Raw Cow's Milk Reduces Allergic Symptoms in a Murine Model for Food Allergy—A Potential Role For Epigenetic Modifications. Nutrients, 2019, 11, 1721.	4.1	40
15	In vivo and in vitro evaluation of the residual allergenicity of partially hydrolysed infant formulas. Toxicology Letters, 2011, 201, 264-269.	0.8	37
16	Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring. Journal of Nutrition, 2015, 145, 996-1002.	2.9	37
17	Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An <scp>EAACI</scp> Taskforce on Immunopharmacology position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 432-448.	5.7	37
18	Butyrate and propionate restore interleukin 13â€compromised esophageal epithelial barrier function. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1510-1521.	5.7	34

BETTY C A M VAN ESCH

#	Article	IF	CITATIONS
19	Improved Efficacy of Oral Immunotherapy Using Non-Digestible Oligosaccharides in a Murine Cow's Milk Allergy Model: A Potential Role for Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2017, 8, 1230.	4.8	33
20	Butyrate and Propionate Restore the Cytokine and House Dust Mite Compromised Barrier Function of Human Bronchial Airway Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 65.	4.1	33
21	Suppression of Food Allergic Symptoms by Raw Cow's Milk in Mice is Retained after Skimming but Abolished after Heating the Milk—A Promising Contribution of Alkaline Phosphatase. Nutrients, 2019, 11, 1499.	4.1	29
22	Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow's milk allergy. Pediatric Allergy and Immunology, 2009, 21, e780-e786.	2.6	28
23	Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies. Molecular Nutrition and Food Research, 2017, 61, 1700340.	3.3	26
24	DHA-Rich Tuna Oil Effectively Suppresses Allergic Symptoms in Mice Allergic to Whey or Peanut. Journal of Nutrition, 2014, 144, 1970-1976.	2.9	25
25	The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow's milk- and peanut allergy models. Clinical and Translational Allergy, 2017, 7, 35.	3.2	25
26	Butyrate Enhances Desensitization Induced by Oral Immunotherapy in Cow's Milk Allergic Mice. Mediators of Inflammation, 2019, 2019, 1-12.	3.0	24
27	Loss of allergy-protective capacity of raw cow's milk after heat treatment coincides with loss of immunologically active whey proteins. Food and Function, 2020, 11, 4982-4993.	4.6	24
28	Immune modulation via T regulatory cell enhancement: Diseaseâ€modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases—An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 90-113.	5.7	24
29	Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients, 2020, 12, 3193.	4.1	23
30	Increased intake of vegetable oil rich in <i>n</i> -6 PUFA enhances allergic symptoms and prevents oral tolerance induction in whey-allergic mice. British Journal of Nutrition, 2015, 114, 577-585.	2.3	22
31	A Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates Partial Non-Responsiveness to Whey Protein in Mice Orally Exposed to β-Lactoglobulin-Derived Peptides. Frontiers in Immunology, 2016, 7, 673.	4.8	18
32	Dietary Supplementation with Nondigestible Oligosaccharides Reduces Allergic Symptoms and Supports Low Dose Oral Immunotherapy in a Peanut Allergy Mouse Model. Molecular Nutrition and Food Research, 2018, 62, e1800369.	3.3	18
33	Dietary Intervention with Î ² -Lactoglobulin-Derived Peptides and a Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates the Prevention of Whey-Induced Allergy in Mice by Supporting a Tolerance-Prone Immune Environment. Frontiers in Immunology, 2017, 8, 1303.	4.8	17
34	IL-10 Receptor or TGF-β Neutralization Abrogates the Protective Effect of a Specific Nondigestible Oligosaccharide Mixture in Cow-Milk-Allergic Mice. Journal of Nutrition, 2018, 148, 1372-1379.	2.9	13
35	Raw Milk-Induced Protection against Food Allergic Symptoms in Mice Is Accompanied by Shifts in Microbial Community Structure. International Journal of Molecular Sciences, 2021, 22, 3417.	4.1	10
36	IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 2447.	4.1	7

BETTY C A M VAN ESCH

#	Article	IF	CITATIONS
37	A multi-center assessment to compare residual allergenicity of partial hydrolyzed whey proteins in a murine model for cow's milk allergy – Comparison to the single parameter guinea pig model. Toxicology Letters, 2020, 333, 312-321.	0.8	6
38	Direct Inhibition of the Allergic Effector Response by Raw Cow's Milk—An Extensive In Vitro Assessment. Cells, 2020, 9, 1258.	4.1	5
39	Gene expression and clinical outcomes after dietary treatment for eosinophilic esophagitis: a prospective study. Neurogastroenterology and Motility, 2022, 34, .	3.0	5
40	Non-digestible oligosaccharides scFOS/lcFOS facilitate safe subcutaneous immunotherapy for peanut allergy. Clinical and Molecular Allergy, 2019, 17, 7.	1.8	3