Robert Kofler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2375731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 2011, 27, 3435-3436.	4.1	729
2	Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 2014, 15, 749-763.	16.3	654
3	PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals. PLoS ONE, 2011, 6, e15925.	2.5	556
4	Genomeâ€wide patterns of latitudinal differentiation among populations of <i><scp>D</scp>rosophila melanogaster</i> from <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2012, 21, 4748-4769.	3.9	256
5	Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1002487.	3.5	223
6	Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biology, 2019, 17, e3000128.	5.6	212
7	Adaptation of <i>Drosophila</i> to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular Ecology, 2012, 21, 4931-4941.	3.9	194
8	Evolutionary genomics can improve prediction of species' responses to climate change. Evolution Letters, 2020, 4, 4-18.	3.3	190
9	Massive Habitat-Specific Genomic Response in D. melanogaster Populations during Experimental Evolution in Hot and Cold Environments. Molecular Biology and Evolution, 2014, 31, 364-375.	8.9	138
10	A Guide for the Design of Evolve and Resequencing Studies. Molecular Biology and Evolution, 2014, 31, 474-483.	8.9	138
11	The recent invasion of natural <i>Drosophila simulans</i> populations by the P-element. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6659-6663.	7.1	101
12	Tempo and Mode of Transposable Element Activity in Drosophila. PLoS Genetics, 2015, 11, e1005406.	3.5	97
13	PoPoolationTE2: Comparative Population Genomics of Transposable Elements Using Pool-Seq. Molecular Biology and Evolution, 2016, 33, 2759-2764.	8.9	86
14	Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in <i>Drosophila mauritiana</i> . Genome Research, 2013, 23, 99-110.	5.5	73
15	Molecular dissection of a natural transposable element invasion. Genome Research, 2018, 28, 824-835.	5.5	64
16	Poolâ€hmm: a Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples. Molecular Ecology Resources, 2013, 13, 337-340.	4.8	55
17	Dynamics of Transposable Element Invasions with piRNA Clusters. Molecular Biology and Evolution, 2019, 36, 1457-1472.	8.9	54
18	MimicrEE2: Genome-wide forward simulations of Evolve and Resequencing studies. PLoS Computational Biology, 2018, 14, e1006413.	3.2	43

ROBERT KOFLER

#	Article	IF	CITATIONS
19	Gaussian process test for high-throughput sequencing time series: application to experimental evolution. Bioinformatics, 2015, 31, 1762-1770.	4.1	41
20	Suitability of Different Mapping Algorithms for Genome-Wide Polymorphism Scans with Pool-Seq Data. G3: Genes, Genomes, Genetics, 2016, 6, 3507-3515.	1.8	38
21	Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies. Genome Biology, 2019, 20, 169.	8.8	33
22	DeviaTE: Assemblyâ€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354.	4.8	28
23	Rapid sex-specific adaptation to high temperature in Drosophila. ELife, 2020, 9, .	6.0	25
24	The impact of library preparation protocols on the consistency of allele frequency estimates in P ool― S eq data. Molecular Ecology Resources, 2016, 16, 118-122.	4.8	22
25	piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biology and Evolution, 2020, 12, 736-749.	2.5	20
26	Evolutionary dynamics of piRNA clusters in <i>Drosophila</i> . Molecular Ecology, 2023, 32, 1306-1322.	3.9	20
27	Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and Resequence Studies. Molecular Biology and Evolution, 2019, 36, 2890-2905.	8.9	14
28	Novel quality metrics allow identifying and generating highâ€quality assemblies of piRNA clusters. Molecular Ecology Resources, 2022, 22, 102-121.	4.8	13
29	Regulation of transposable elements: Interplay between TEâ€encoded regulatory sequences and hostâ€specific <i>transâ€</i> acting factors in <i>Drosophila melanogaster</i> . Molecular Ecology, 2017, 26, 5149-5159.	3.9	12
30	The Transposition Rate Has Little Influence on the Plateauing Level of the P-element. Molecular Biology and Evolution, 2022, 39, .	8.9	11
31	Tirant Stealthily Invaded Natural <i>Drosophila melanogaster</i> Populations during the Last Century. Molecular Biology and Evolution, 2021, 38, 1482-1497.	8.9	10
32	SimulaTE: simulating complex landscapes of transposable elements of populations. Bioinformatics, 2018, 34, 1419-1420.	4.1	3
33	Reconstructing the Invasion Route of the P-Element in <i>Drosophila melanogaster</i> Using Extant Population Samples. Genome Biology and Evolution, 2020, 12, 2139-2152.	2.5	2