List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2375168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fault Warning and Location in Battery Energy Storage Systems via Venting Acoustic Signal. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 100-108.	5.4	11
2	Real-Time Overcharge Warning and Early Thermal Runaway Prediction of Li-Ion Battery by Online Impedance Measurement. IEEE Transactions on Industrial Electronics, 2022, 69, 1929-1936.	7.9	43
3	Rapid ultracapacitor life prediction with a convolutional neural network. Applied Energy, 2022, 305, 117819.	10.1	29
4	Deep neural network battery life and voltage prediction by using data of one cycle only. Applied Energy, 2022, 306, 118134.	10.1	57
5	Current sensor fault diagnosis method based on an improved equivalent circuit battery model. Applied Energy, 2022, 310, 118588.	10.1	52
6	Enhanced Lithium-ion battery model considering critical surface charge behavior. Applied Energy, 2022, 314, 118915.	10.1	24
7	Dataâ€driven battery degradation prediction: Forecasting voltageâ€capacity curves using oneâ€cycle data. EcoMat, 2022, 4, .	11.9	14
8	A novel data-driven method for mining battery open-circuit voltage characterization. , 2022, 1, 100001.		49
9	Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning. Energy Storage Materials, 2022, 50, 139-151.	18.0	61
10	Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction. , 2022, 1, 100008.		61
11	Benign-to-malignant transition in external short circuiting of lithium-ion batteries. Cell Reports Physical Science, 2022, , 100923.	5.6	3
12	Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning. Energy Storage Materials, 2022, 50, 718-729.	18.0	79
13	Flexible battery state of health and state of charge estimation using partial charging data and deep learning. Energy Storage Materials, 2022, 51, 372-381.	18.0	84
14	Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit. Engineering, 2021, 7, 395-405.	6.7	82
15	A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles. Energies, 2021, 14, 829.	3.1	18
16	Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries with Multi-Stage Model Fusion Method. Engineering, 2021, 7, 1469-1482.	6.7	61
17	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	39.5	323
18	Energy management strategy of connected hybrid electric vehicles considering electricity and oil price fluctuations: A case study of ten typical cities in China. Journal of Energy Storage, 2021, 36, 102347.	8.1	20

#	Article	IF	CITATIONS
19	Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack. Applied Thermal Engineering, 2021, 190, 116811.	6.0	48
20	Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries. Energy Storage Materials, 2021, 37, 283-295.	18.0	124
21	State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. Applied Energy, 2021, 291, 116812.	10.1	151
22	Application of Digital Twin in Smart Battery Management Systems. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	49
23	Deep neural network battery charging curve prediction using 30 points collected in 10Âmin. Joule, 2021, 5, 1521-1534.	24.0	152
24	Electro-thermal coupling model of lithium-ion batteries under external short circuit. Applied Energy, 2021, 293, 116910.	10.1	28
25	Deep neural network battery impedance spectra prediction by only using constant-current curve. Energy Storage Materials, 2021, 41, 24-31.	18.0	44
26	Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods. Applied Energy, 2021, 300, 117386.	10.1	59
27	Online Fault Diagnosis of External Short Circuit for Lithium-Ion Battery Pack. IEEE Transactions on Industrial Electronics, 2020, 67, 1081-1091.	7.9	125
28	Battery Management Algorithm for Electric Vehicles. , 2020, , .		31
29	A novel model predictive control scheme based observer for working conditions and reconditioning monitoring of Zinc-Nickel single flow batteries. Journal of Power Sources, 2020, 445, 227282.	7.8	6
30	Online simultaneous identification of parameters and order of a fractional order battery model. Journal of Cleaner Production, 2020, 247, 119147.	9.3	47
31	Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks. Applied Energy, 2020, 260, 114253.	10.1	86
32	The state of the art on preheating lithium-ion batteries in cold weather. Journal of Energy Storage, 2020, 27, 101059.	8.1	120
33	A set membership theory based parameter and state of charge co-estimation method for all-climate batteries. Journal of Cleaner Production, 2020, 249, 119380.	9.3	45
34	Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Applied Energy, 2020, 279, 115855.	10.1	207
35	Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 2020, 131, 110048.	16.4	312
36	Fractional order battery modelling methodologies for electric vehicle applications: Recent advances and perspectives. Science China Technological Sciences, 2020, 63, 2211-2230.	4.0	31

#	Article	IF	CITATIONS
37	A Novel Active Equalization Topology for Series-Connected Lithium-ion Battery Packs. IEEE Transactions on Industry Applications, 2020, 56, 6892-6903.	4.9	32
38	IEEE Access Special Section Editorial: Advanced Energy Storage Technologies and Their Applications. IEEE Access, 2020, 8, 218685-218693.	4.2	7
39	Experimental Study on External Short Circuit and Overcharge of Lithium-ion Battery Packs for Electric Vehicles. , 2020, , .		3
40	Toward a Safer Battery Management System: A Critical Review on Diagnosis and Prognosis of Battery Short Circuit. IScience, 2020, 23, 101010.	4.1	122
41	State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries. IEEE Transactions on Power Electronics, 2020, 35, 10363-10373.	7.9	156
42	A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	3.7	24
43	Algorithm Development, Test, and Evaluation. , 2020, , 271-297.		0
44	Remaining Useful Life Prediction of Lithium-Ion Batteries. , 2020, , 217-242.		0
45	Battery SOC and SOH Estimation. , 2020, , 107-165.		0
46	Overview of Battery and Its Management. , 2020, , 1-24.		1
47	State Estimation of Battery System. , 2020, , 167-215.		0
48	Low-Temperature Heating and Optimal Charging Methods for Lithium-Ion Batteries. , 2020, , 243-270.		1
49	Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 4110-4121.	6.3	269
50	Model-Based Sensor Fault Detection for Lithium-Ion Batteries in Electric Vehicles. , 2019, , .		2
51	Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures. Journal of Energy Storage, 2019, 25, 100878.	8.1	27
52	Improved Single Particle Model Based State of Charge and Capacity Monitoring of Lithium-Ion Batteries. , 2019, , .		5
53	A Comparative Study on Fractional Order Models for Voltage Simulation of Lithium Ion Batteries. , 2019, , .		4
54	Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries. ETransportation, 2019, 1, 100004.	14.8	81

#	Article	IF	CITATIONS
55	State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. Journal of Cleaner Production, 2019, 234, 1153-1164.	9.3	157
56	A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles. Applied Energy, 2019, 255, 113758.	10.1	99
57	Online capacity estimation for lithium-ion batteries through joint estimation method. Applied Energy, 2019, 255, 113817.	10.1	59
58	State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction. Applied Energy, 2019, 255, 113818.	10.1	34
59	A Novel Dynamic Performance Analysis and Evaluation Model of Series-Parallel Connected Battery Pack for Electric Vehicles. IEEE Access, 2019, 7, 14256-14265.	4.2	55
60	Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries. Energy, 2019, 183, 220-234.	8.8	141
61	Pathways for sustainable energy transition. Journal of Cleaner Production, 2019, 228, 1564-1571.	9.3	106
62	Water-Resistant Smartphone Technologies. IEEE Access, 2019, 7, 42757-42773.	4.2	12
63	Frequency and time domain modelling and online state of charge monitoring for ultracapacitors. Energy, 2019, 176, 874-887.	8.8	24
64	A review on state of health estimation for lithium ion batteries in photovoltaic systems. ETransportation, 2019, 2, 100028.	14.8	95
65	A Novel Fractional Order Model for State of Charge Estimation in Lithium Ion Batteries. IEEE Transactions on Vehicular Technology, 2019, 68, 4130-4139.	6.3	186
66	Comparison of decomposition levels for wavelet transform based energy management in a plug-in hybrid electric vehicle. Journal of Cleaner Production, 2019, 210, 1085-1097.	9.3	37
67	Online Estimation of Power Capacity With Noise Effect Attenuation for Lithium-Ion Battery. IEEE Transactions on Industrial Electronics, 2019, 66, 5724-5735.	7.9	109
68	A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles. IEEE Transactions on Power Electronics, 2019, 34, 9709-9718.	7.9	170
69	Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries. Journal of Cleaner Production, 2019, 212, 240-249.	9.3	98
70	Adaptive Inverse Control of Piezoelectric Actuators Based on Segment Similarity. IEEE Transactions on Industrial Electronics, 2019, 66, 5403-5411.	7.9	20
71	Fractional-Order Model-Based Incremental Capacity Analysis for Degradation State Recognition of Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2019, 66, 1576-1584.	7.9	188
72	Lithium-Ion Battery Remaining Useful Life Prediction With Box–Cox Transformation and Monte Carlo Simulation. IEEE Transactions on Industrial Electronics, 2019, 66, 1585-1597.	7.9	159

#	Article	IF	CITATIONS
73	Analytical and Experimental Evaluation of SiC-Inverter Nonlinearities for Traction Drives Used in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 146-159.	6.3	96
74	Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle. Applied Energy, 2018, 217, 153-165.	10.1	97
75	An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application. Applied Energy, 2018, 219, 264-275.	10.1	181
76	Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries. IEEE Transactions on Vehicular Technology, 2018, 67, 5695-5705.	6.3	723
77	Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application. Applied Energy, 2018, 213, 375-383.	10.1	118
78	Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles. IEEE Access, 2018, 6, 1832-1843.	4.2	606
79	Modeling, Evaluation, and State Estimation for Batteries. , 2018, , 1-38.		6
80	HESS and Its Application in Series Hybrid Electric Vehicles. , 2018, , 77-119.		6
81	A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries. Energy, 2018, 144, 789-799.	8.8	118
82	A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application. Journal of Cleaner Production, 2018, 187, 950-959.	9.3	142
83	A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application. Applied Energy, 2018, 219, 256-263.	10.1	91
84	Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime. Applied Energy, 2018, 218, 470-478.	10.1	53
85	A Lithium-Ion Battery-in-the-Loop Approach to Test and Validate Multiscale Dual H Infinity Filters for State-of-Charge and Capacity Estimation. IEEE Transactions on Power Electronics, 2018, 33, 332-342.	7.9	207
86	Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle. Applied Energy, 2018, 211, 538-548.	10.1	416
87	A Double-Scale, Particle-Filtering, Energy State Prediction Algorithm for Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2018, 65, 1526-1538.	7.9	218
88	Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Based on Dual Extended Kalman Filter. Energy Procedia, 2018, 152, 574-579.	1.8	20
89	A set-membership algorithm based parameter identification method for lithium-ion batteries. Energy Procedia, 2018, 152, 580-585.	1.8	3
90	Preparation of Papers for IFAC Conferences & Symposia: A comparative study of remaining useful life predictions for lithium-ion battery. IFAC-PapersOnLine, 2018, 51, 268-273.	0.9	4

RUI XIONG

#	Article	IF	CITATIONS
91	A Comparative Study on Open Circuit Voltage Models for Lithium-ion Batteries. Chinese Journal of Mechanical Engineering (English Edition), 2018, 31, .	3.7	72
92	A Bias Correction Based State-of-Charge Estimation Method for Multi-Cell Battery Pack Under Different Working Conditions. IEEE Access, 2018, 6, 78184-78192.	4.2	9
93	Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling. Journal of Power Sources, 2018, 402, 252-262.	7.8	44
94	Towards a smarter battery management system: A critical review on battery state of health monitoring methods. Journal of Power Sources, 2018, 405, 18-29.	7.8	577
95	Research on the Battery Charging Strategy With Charging and Temperature Rising Control Awareness. IEEE Access, 2018, 6, 64193-64201.	4.2	47
96	Towards a smarter hybrid energy storage system based on battery and ultracapacitor - A critical review on topology and energy management. Journal of Cleaner Production, 2018, 202, 1228-1240.	9.3	139
97	A mechanism identification model based state-of-health diagnosis of lithium-ion batteries for energy storage applications. Journal of Cleaner Production, 2018, 193, 379-390.	9.3	65
98	Review on sensors fault diagnosis and fault-tolerant techniques for lithium ion batteries in electric vehicles. , 2018, , .		19
99	Research Progress on Electric and Intelligent Vehicles. Energies, 2018, 11, 1762.	3.1	4
100	The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation. Applied Energy, 2018, 230, 189-206.	10.1	71
101	A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach. Applied Energy, 2018, 229, 648-659.	10.1	33
102	Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system. Applied Energy, 2017, 185, 1654-1662.	10.1	222
103	Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming. Applied Energy, 2017, 185, 1633-1643.	10.1	494
104	An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle. Applied Energy, 2017, 185, 1663-1672.	10.1	105
105	A novel H â^ž and EKF joint estimation method for determining the center of gravity position of electric vehicles. Applied Energy, 2017, 194, 609-616.	10.1	27
106	Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy. Applied Energy, 2017, 194, 560-568.	10.1	71
107	Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus. Applied Energy, 2017, 194, 798-807.	10.1	56
108	A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles. Applied Energy, 2017, 207, 363-371.	10.1	32

#	Article	IF	CITATIONS
109	An Online Model-based Battery Parameter and State Estimation Method Using Multi-scale Dual Adaptive Particle Filters. Energy Procedia, 2017, 105, 4549-4554.	1.8	13
110	Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters. IEEE Transactions on Vehicular Technology, 2017, 66, 8693-8701.	6.3	177
111	A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles. Applied Energy, 2017, 207, 336-345.	10.1	91
112	A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Applied Energy, 2017, 207, 346-353.	10.1	233
113	A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. Applied Energy, 2017, 207, 372-383.	10.1	201
114	Online Estimation of State-of-charge Based on the H infinity and Unscented Kalman Filters for Lithium Ion Batteries. Energy Procedia, 2017, 105, 2791-2796.	1.8	34
115	A Chinese Geographic Knowledge Base for GIR. , 2017, , .		1
116	A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries. Applied Energy, 2017, 205, 892-902.	10.1	83
117	A new strategy of efficiency enhancement for traction systems in electric vehicles. Applied Energy, 2017, 205, 880-891.	10.1	35
118	A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Applied Energy, 2017, 207, 384-393.	10.1	128
119	A novel combinatorial optimization algorithm for energy management strategy of plug-in hybrid electric vehicle. Journal of the Franklin Institute, 2017, 354, 6588-6609.	3.4	32
120	A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. , 2017, , .		55
121	The Estimation of State of Charge for Power Battery Packs used in Hybrid Electric Vehicle. Energy Procedia, 2017, 105, 2678-2683.	1.8	15
122	Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Applied Energy, 2017, 201, 257-269.	10.1	186
123	Lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using a Hardware-in-the-Loop Validation. IEEE Transactions on Power Electronics, 2017, 32, 4421-4431.	7.9	178
124	A study on the inflence of two OCV tests on state of charge estimation of lithium ion battery. , 2017, , .		3
125	Online estimation of state of power for lithium-ion battery considering the battery aging. , 2017, , .		4
126	Research on influence of battery aging on energy management economy for plug-in hybrid electric vehicle. , 2017, , .		3

8

RUI XIONG

#	Article	IF	CITATIONS
127	An echelon internal heating strategy for lithium-ion battery. Energy Procedia, 2017, 142, 3135-3140.	1.8	6
128	Reinforcement Learning-based Real-time Energy Management for Plug-in Hybrid Electric Vehicle with Hybrid Energy Storage System. Energy Procedia, 2017, 142, 1896-1901.	1.8	25
129	Open circuit voltage and state of charge online estimation for lithium ion batteries. Energy Procedia, 2017, 142, 1902-1907.	1.8	23
130	Driving cycle development for electric vehicle application using principal component analysis and k-means cluster: with the case of Shenyang, China. Energy Procedia, 2017, 142, 2264-2269.	1.8	5
131	Advanced Energy Storage Technologies and Their Applications (AESA2017). Energies, 2017, 10, 1366.	3.1	2
132	Switching Device Dead Time Optimization of Resonant Double-Sided LCC Wireless Charging System for Electric Vehicles. Energies, 2017, 10, 1772.	3.1	10
133	Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model. Energies, 2017, 10, 2174.	3.1	23
134	A Novel Dual H Infinity Filters Based Battery Parameter and State Estimation Approach for Electric Vehicles Application. Energy Procedia, 2016, 103, 375-380.	1.8	15
135	An Improved Battery On-line Parameter Identification and State-of-charge Determining Method. Energy Procedia, 2016, 103, 381-386.	1.8	10
136	Model-based State-of-charge Estimation Approach of the Lithium-ion Battery Using an Improved Adaptive Particle Filter. Energy Procedia, 2016, 103, 394-399.	1.8	21
137	A Novel Multi-model Probability Based Battery State-of-charge Fusion Estimation Approach. Energy Procedia, 2016, 88, 840-846.	1.8	6
138	AMT downshifting strategy design of HEV during regenerative braking process for energy conservation. Applied Energy, 2016, 183, 914-925.	10.1	66
139	Lateral stability control of four wheels independently drive articulated electric vehicle. , 2016, , .		4
140	Evaluation of the model-based state-of-charge estimation methods for lithium-ion batteries. , 2016, , .		6
141	Model-based health condition monitoring method for multi-cell series-connected battery pack. , 2016, ,		1
142	Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles. Applied Energy, 2016, 183, 612-622.	10.1	61
143	A Novel Efficiency Modeling Method for a DC-DC Converter in the Hybrid Energy Storage System for Electric Vehicles. Energy Procedia, 2016, 88, 935-939.	1.8	3
144	Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system. Applied Energy, 2016, 179, 316-328.	10.1	116

#	Article	IF	CITATIONS
145	Multi-objective Optimal Energy Management Strategy and Economic Analysis for an Range-Extended Electric Bus. Energy Procedia, 2016, 88, 814-820.	1.8	7
146	Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles. Applied Energy, 2016, 184, 365-374.	10.1	150
147	Heuristic modeling and inverse compensation of hysteresis in piezoelectric actuators based on time series similarity. Journal of Intelligent Material Systems and Structures, 2016, 27, 1814-1828.	2.5	5
148	A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Applied Energy, 2016, 162, 1399-1409.	10.1	263
149	An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus. Energy, 2016, 96, 437-448.	8.8	32
150	A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm. Applied Energy, 2016, 166, 76-83.	10.1	170
151	Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy, 2016, 96, 197-208.	8.8	210
152	Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform. Applied Energy, 2016, 162, 1410-1418.	10.1	100
153	Study on Energy Management Strategies for Series-parallel Plug-in Hybrid Electric Buses. Energy Procedia, 2015, 75, 1926-1931.	1.8	17
154	A Data-Driven Based State of Energy Estimator of Lithium-ion Batteries Used to Supply Electric Vehicles. Energy Procedia, 2015, 75, 1944-1949.	1.8	17
155	Modeling of Hysteresis in Piezoelectric Actuator Based on Segment Similarity. Micromachines, 2015, 6, 1805-1824.	2.9	8
156	Modeling, Control, and Optimization Technologies in Electric Drive Vehicles. Scientific World Journal, The, 2015, 2015, 1-2.	2.1	0
157	Optimal Energy Management Strategy of a Plug-in Hybrid Electric Vehicle Based on a Particle Swarm Optimization Algorithm. Energies, 2015, 8, 3661-3678.	3.1	108
158	A data-driven bias correction method based lithiumion battery modeling approach for electric vehicle applications. IEEE Transactions on Industry Applications, 2015, , 1-1.	4.9	7
159	Loss-Minimization-Based Charging Strategy for Lithium-Ion Battery. IEEE Transactions on Industry Applications, 2015, 51, 4121-4129.	4.9	67
160	Research on an Online Identification Algorithm for a Thevenin Battery Model by an Experimental Approach. International Journal of Green Energy, 2015, 12, 272-278.	3.8	37
161	Comparison of the topologies for a hybrid energy-storage system of electric vehicles via a novel optimization method. Science China Technological Sciences, 2015, 58, 1173-1185.	4.0	22
162	Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming. Applied Energy, 2015, 155, 68-78.	10.1	325

RUI XIONG

#	Article	IF	CITATIONS
163	A novel Gaussian model based battery state estimation approach: State-of-Energy. Applied Energy, 2015, 151, 41-48.	10.1	99
164	Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells. IEEE Transactions on Industry Applications, 2015, 51, 1872-1879.	4.9	166
165	Pontryagin's Minimum Principle-based power management of a dual-motor-driven electric bus. Applied Energy, 2015, 159, 370-380.	10.1	97
166	Methodology for Optimal Sizing of Hybrid Power System Usingparticle Swarm Optimization and Dynamic Programming. Energy Procedia, 2015, 75, 1895-1900.	1.8	12
167	A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles. Journal of Power Sources, 2015, 274, 582-594.	7.8	178
168	Loss minimization-based charging strategy for lithium-ion battery. , 2014, , .		7
169	Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles. Energies, 2014, 7, 6783-6797.	3.1	35
170	An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control. Energies, 2014, 7, 3748-3763.	3.1	51
171	A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries. Energies, 2014, 7, 8076-8094.	3.1	31
172	A novel approach to state of charge estimation using extended Kalman filtering for lithium-ion batteries in electric vehicles. , 2014, , .		6
173	Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming. Journal of Power Sources, 2014, 248, 416-426.	7.8	203
174	A data-driven bias correction method based lithium-ion battery modeling approach for electric vehicles application. , 2014, , .		4
175	Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells. , 2014, , .		20
176	Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions. IEEE Transactions on Industrial Informatics, 2014, 10, 1948-1959.	11.3	107
177	Data-driven State-of-Charge estimator for electric vehicles battery using robust extended Kalman filter. International Journal of Automotive Technology, 2014, 15, 89-96.	1.4	26
178	Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions. Journal of Power Sources, 2014, 259, 166-176.	7.8	127
179	A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Applied Energy, 2014, 113, 463-476.	10.1	437
180	A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles. Applied Energy, 2014, 113, 1421-1433.	10.1	196

#	Article	IF	CITATIONS
181	Cell State-of-Charge Estimation for the Multi-cell Series-connected Battery Pack with Model blas Correction Approach. Energy Procedia, 2014, 61, 172-175.	1.8	5
182	A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. Journal of Power Sources, 2013, 243, 805-816.	7.8	164
183	A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy, 2013, 63, 295-308.	8.8	178
184	Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles. Journal of Power Sources, 2013, 229, 159-169.	7.8	173
185	Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles. Journal of Power Sources, 2013, 242, 699-713.	7.8	129
186	Energy management strategy research on a hybrid power system by hardware-in-loop experiments. Applied Energy, 2013, 112, 1311-1317.	10.1	117
187	Evaluation on State of Charge Estimation of Batteries With Adaptive Extended Kalman Filter by Experiment Approach. IEEE Transactions on Vehicular Technology, 2013, 62, 108-117.	6.3	342
188	Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach. Energies, 2012, 5, 1455-1469.	3.1	109
189	Study on the Torque Allocation Strategy of the Distributed Driving Electric Vehicles Running in Straight Line with a Single Failure Motor. , 2012, , .		2
190	Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries. Applied Energy, 2012, 96, 378-386.	10.1	159
191	Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Conversion and Management, 2012, 64, 113-121.	9.2	374
192	Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Applied Energy, 2012, 89, 413-420.	10.1	322
193	Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy, 2012, 39, 310-318.	8.8	393
194	Modeling for Lithium-Ion Battery used in Electric Vehicles. Procedia Engineering, 2011, 15, 2869-2874.	1.2	60
195	Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 2011, 4, 582-598.	3.1	790
196	State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model. IEEE Transactions on Vehicular Technology, 2011, 60, 1461-1469.	6.3	597
197	Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications. Energies, 2010, 3, 1821-1830.	3.1	63
198	Design an Unscented Kalman Filter-Based SoC Estimator for HEV Application. Advanced Materials Research, 0, 588-589, 424-428.	0.3	2