Xian-Hua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/237276/publications.pdf

Version: 2024-02-01

81 papers 2,666 citations

186265
28
h-index

197818 49 g-index

84 all docs

84 docs citations

84 times ranked 2770 citing authors

#	Article	IF	CITATIONS
1	Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment, 2019, 691, 848-857.	8.0	413
2	Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands. Environmental Pollution, 2021, 269, 116199.	7.5	152
3	Twoâ€stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation ^F . Journal of Integrative Plant Biology, 2011, 53, 246-252.	8.5	136
4	An overview of algae bioethanol production. International Journal of Energy Research, 2014, 38, 965-977.	4.5	103
5	Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012). Scientific Reports, 2015, 5, 16678.	3.3	95
6	The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. Science of the Total Environment, 2021, 773, 145697.	8.0	91
7	Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells. Journal of Power Sources, 2014, 264, 248-253.	7.8	83
8	Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Advances, 2020, 10, 25874-25887.	3.6	75
9	Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu ₂ O–Cu nanocomposites. RSC Advances, 2018, 8, 20277-20286.	3.6	70
10	Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2018, 43, 1805-1815.	7.1	68
11	Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil. Science of the Total Environment, 2020, 741, 140463.	8.0	68
12	Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria. Plant Physiology, 2020, 182, 507-517.	4.8	68
13	Performance of a low-cost direct glucose fuel cell with an anion-exchange membrane. International Journal of Hydrogen Energy, 2015, 40, 10979-10984.	7.1	59
14	Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Science of the Total Environment, 2021, 774, 145017.	8.0	56
15	A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Applied Energy, 2013, 106, 176-183.	10.1	54
16	Interactions Between Microplastics and Heavy Metals in Aquatic Environments: A Review. Frontiers in Microbiology, 2021, 12, 652520.	3.5	53
17	Ecological risk assessment to marine organisms induced by heavy metals in China's coastal waters. Marine Pollution Bulletin, 2018, 126, 349-356.	5.0	52
18	Fast photocatalytic degradation of methylene blue dye using a low-power diode laser. Journal of Hazardous Materials, 2015, 283, 267-275.	12.4	46

#	Article	IF	CITATIONS
19	Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater. Bioresource Technology, 2010, 101, 3054-3059.	9.6	44
20	Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electron-transfer catalyst. Journal of Power Sources, 2014, 251, 222-228.	7.8	40
21	Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Science of the Total Environment, 2018, 631-632, 994-1004.	8.0	39
22	High-performance glucose fuel cell with bimetallic Ni–Co composite anchored on reduced graphene oxide as anode catalyst. Renewable Energy, 2020, 155, 1118-1126.	8.9	39
23	Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review. Carbon, 2022, 193, 339-355.	10.3	39
24	Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell. International Journal of Hydrogen Energy, 2019, 44, 8178-8187.	7.1	37
25	Diversity and Biogeochemical Function of Planktonic Fungi in the Ocean. Progress in Molecular and Subcellular Biology, 2012, 53, 71-88.	1.6	36
26	Heteroatom-doped highly porous carbon derived from petroleum coke as efficient cathode catalyst for microbial fuel cells. International Journal of Hydrogen Energy, 2015, 40, 13530-13537.	7.1	35
27	Abundance and Novel Lineages of Thraustochytrids in Hawaiian Waters. Microbial Ecology, 2013, 66, 823-830.	2.8	33
28	Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2017, 42, 29863-29873.	7.1	33
29	Comparative analysis reveals unexpected genome features of newly isolated Thraustochytrids strains: on ecological function and PUFAs biosynthesis. BMC Genomics, 2018, 19, 541.	2.8	30
30	Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode. Science of the Total Environment, 2018, 631-632, 849-856.	8.0	28
31	The global research trend on cadmium in freshwater: a bibliometric review. Environmental Science and Pollution Research, 2023, 30, 71585-71598.	5.3	28
32	Rational modification in the photochromic and self-bleaching performance of hierarchical microsphere Cu@h-WO3/WO3·nH2O composites. Solar Energy Materials and Solar Cells, 2021, 219, 110784.	6.2	26
33	3D porous nanostructured Ni ₃ N–Co ₃ N as a robust electrode material for glucose fuel cell. RSC Advances, 2020, 10, 6444-6451.	3.6	25
34	Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis. Sustainability, 2022, 14, 4855.	3.2	25
35	Ionothermal synthesis of N-doped carbon supported CoMn2O4 nanoparticles as ORR catalyst in direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2021, 46, 20503-20515.	7.1	24
36	Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. Chemosphere, 2021, 285, 131428.	8.2	23

#	Article	IF	Citations
37	Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell. Bioresource Technology, 2016, 222, 226-231.	9.6	21
38	Chlorella-derived porous heteroatom-doped carbons as robust catalysts for oxygen reduction reaction in direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2019, 44, 2823-2831.	7.1	20
39	Efficient charge transfer over Cu-doped hexagonal WO3 nanocomposites for rapid photochromic response. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113716.	3.9	18
40	Differences in the Plastispheres of Biodegradable and Non-biodegradable Plastics: A Mini Review. Frontiers in Microbiology, 2022, 13, 849147.	3 . 5	18
41	Electricity generation from a refuelable glucose alkaline fuel cell with a methyl viologen-immobilized activated carbon anode. Electrochimica Acta, 2016, 222, 1430-1437.	5.2	16
42	Impacts of sanitation upgrading to the decrease of fecal coliforms entering into the environment in China. Environmental Research, 2016, 149, 57-65.	7.5	16
43	The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell. Catalysts, 2016, 6, 95.	3.5	15
44	Characterization and robust nature of newly isolated oleaginous marine yeast Rhodosporidium spp. from coastal water of Northern China. AMB Express, 2017, 7, 30.	3.0	15
45	Gradients of three coastal environments off the South China Sea and their impacts on the dynamics of heterotrophic microbial communities. Science of the Total Environment, 2019, 659, 499-506.	8.0	12
46	A vertically configured photocatalytic-microbial fuel cell for electricity generation and gaseous toluene degradation. Chemosphere, 2021, 285, 131530.	8.2	12
47	ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Marine Drugs, 2021, 19, 564.	4.6	12
48	Novel continuous up-flow MFC for treatment of produced water: Flow rate effect, microbial community, and flow simulation. Chemosphere, 2022, 289, 133186.	8.2	12
49	A single-chamber microbial fuel cell for rapid determination of biochemical oxygen demand using low-cost activated carbon as cathode catalyst. Environmental Technology (United Kingdom), 2018, 39, 3228-3237.	2.2	10
50	Enhanced tetracycline degradation and power generation in a solar-illuminated bio-photoelectrochemical system. Journal of Power Sources, 2021, 497, 229876.	7.8	9
51	Direct Electricity Generation from Dissolved Cellulosic Biomass in an Alkaline Fuel Cell. Fuel Cells, 2018, 18, 219-226.	2.4	8
52	Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp. Frontiers in Microbiology, 2021, 12, 717272.	3.5	8
53	Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity. Environmental Pollution, 2022, 308, 119666.	7.5	8
54	Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell. Nanomaterials, 2016, 6, 238.	4.1	7

#	Article	IF	Citations
55	Diversity of parasitic fungi associated with phytoplankton in Hawaiian waters. Marine Biology Research, 2016, 12, 294-303.	0.7	7
56	N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell. Nanomaterials, 2021, 11, 202.	4.1	7
57	Self-assembled monolayer of lipoic acid on gold and its application to rapid determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Transactions of Tianjin University, 2013, 19, 248-254.	6.4	6
58	Electrodeposition of Silver Nanoparticles on ITO Films with Different Thickness and Application as LSPR Sensor. ECS Electrochemistry Letters, 2014, 3, B30-B32.	1.9	6
59	Value-added apple-derived carbonaceous aerogel for robust supercapacitor. International Journal of Hydrogen Energy, 2021, 46, 30727-30738.	7.1	6
60	Impacts of Micro- and Nanoplastics on Photosynthesis Activities of Photoautotrophs: A Mini-Review. Frontiers in Microbiology, 2021, 12, 773226.	3.5	6
61	Use of multivariate calibration models based on UV-Vis spectra for seawater quality monitoring in Tianjin Bohai Bay, China. Water Science and Technology, 2015, 71, 1444-1450.	2.5	5
62	Marine Algae-Derived Porous Carbons as Robust Electrocatalysts for ORR. Catalysts, 2019, 9, 730.	3.5	5
63	Genome engineering and synthetic biology for biofuels: A bibliometric analysis. Biotechnology and Applied Biochemistry, 2020, 67, 824-834.	3.1	5
64	Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expression and Purification, 2021, 179, 105806.	1.3	5
65	Ketobacter nezhaii sp. nov., a marine bacterium isolated from coastal sediment. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4960-4965.	1.7	5
66	Co2+-P(W3O10)43â^' modified activated carbon as an efficient anode catalyst for direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2022, 47, 22952-22962.	7.1	5
67	Hydrothermal synthesis of natroalunite nanostructures and their Fâ^'-ion removal properties in water. CrystEngComm, 2019, 21, 4987-4995.	2.6	4
68	ZnO@zeolitic imidazolate frameworks derived porous hybrid hollow carbon shell as an efficient electrocatalyst for oxygen reduction. Journal of Materials Science, 2021, 56, 14989-15003.	3.7	4
69	Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts. Energies, 2021, 14, 206.	3.1	4
70	The Ecological Perspective of Microbial Communities in Two Pairs of Competitive Hawaiian Native and Invasive Macroalgae. Microbial Ecology, 2013, 65, 361-370.	2.8	3
71	Optimization of Fabrication Parameters to Enhance the Performance of Activated Carbon Air-Cathode. Journal of the Electrochemical Society, 2015, 162, F1347-F1355.	2.9	3
72	Energy extraction from seaweed under low temperatures by using an alkaline fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2107-2115.	2.3	3

#	Article	IF	CITATIONS
73	Synergistic approach of high-performance N-NiCo/PC environment benign electrode material for energy storage device. Journal of Materials Science: Materials in Electronics, 2021, 32, 22245-22255.	2.2	3
74	Physically mixed Ni2Co/graphene catalyst for enhanced glucose oxidation in a glucose fuel cell. Biomass Conversion and Biorefinery, 2024, 14, 525-537.	4.6	3
75	Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1583-1591.	1.7	2
76	Study on Real-Time Monitoring of Seawater COD by UV-Vis Spectroscopy. Advanced Materials Research, 2013, 726-731, 1534-1537.	0.3	2
77	Research on Teaching Reform on Environmental Biochemistry Based on Teaching Materials. Communications in Computer and Information Science, 2011, , 22-25.	0.5	1
78	Determination of flavonoids and their antioxidant capacities in Chinese Jujube. , $2011, \ldots$		0
79	Photocatalytic Degradation of 2,4,5–TCP in TiO ₂ /UV/H ₂ O ₂ System. Advanced Materials Research, 2012, 518-523, 2649-2652.	0.3	0
80	Study on Emission Control of Dioxins by Thermal Decomposition. Advanced Materials Research, 0, 726-731, 2079-2083.	0.3	0
81	Editorial: Microplastics and Microorganisms in the Environment. Frontiers in Microbiology, 0, 13 , .	3.5	O