
Wei Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient expansion and myofibroblast conversion of adipogenic lineage precursors mediate bone marrow repair after radiation. JCI Insight, 2022, 7, .	5.0	7
2	Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. Journal of Clinical Investigation, 2021, 131, .	8.2	101
3	PparÎ ³ 1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers, 2021, 13, 2171.	3.7	5
4	Depalmitoylation rewires FLT3-ITD signaling and exacerbates leukemia progression. Blood, 2021, 138, 2244-2255.	1.4	20
5	HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell, 2021, 28, 1275-1290.e9.	11.1	30
6	LNK (SH2B3) Inhibition Expands Healthy and Fanconi Anemia Human Hematopoietic Stem and Progenitor Cells. Blood Advances, 2021, , .	5.2	3
7	Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Frontiers in Immunology, 2020, 11, 593863.	4.8	21
8	Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. ELife, 2020, 9, .	6.0	191
9	The BRISC deubiquitinating enzyme complex limits hematopoietic stem cell expansion by regulating JAK2 K63-ubiquitination. Blood, 2019, 133, 1560-1571.	1.4	19
10	Lnk/Sh2b3 deficiency restores hematopoietic stem cell function and genome integrity in Fancd2 deficient Fanconi anemia. Nature Communications, 2018, 9, 3915.	12.8	15
11	CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes and Development, 2017, 31, 1007-1023.	5.9	49
12	Rb family proteins enforce the homeostasis of quiescent hematopoietic stem cells by repressing Socs3 expression. Journal of Experimental Medicine, 2017, 214, 1901-1912.	8.5	13
13	Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms. Journal of Bone and Mineral Research, 2017, 32, 360-372.	2.8	88
14	Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells. Journal of Clinical Investigation, 2016, 126, 975-991.	8.2	44
15	LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circulation Research, 2016, 119, e91-e103.	4.5	61
16	Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. Cell Stem Cell, 2016, 18, 73-78.	11.1	78
17	LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. Journal of Clinical Investigation, 2016, 126, 1267-1281.	8.2	67
18	MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood, 2015, 125, 1730-1738.	1.4	8

Wei Tong

#	Article	IF	CITATIONS
19	MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes and Development, 2015, 29, 1955-1968.	5.9	22
20	ARAP3 Functions in Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e116107.	2.5	5
21	Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood, 2013, 122, 2425-2432.	1.4	101
22	Lnk deficiency partially mitigates hematopoietic stem cell aging. Aging Cell, 2012, 11, 949-959.	6.7	22
23	Signaling Profiling at the Single-Cell Level Identifies a Distinct Signaling Signature in Murine Hematopoietic Stem Cells. Stem Cells, 2012, 30, 1447-1454.	3.2	11
24	A novel mutation in MPL (Y252H) results in increased thrombopoietin sensitivity in essential thrombocythemia. American Journal of Hematology, 2012, 87, 532-534.	4.1	17
25	14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. Journal of Clinical Investigation, 2012, 122, 2079-2091.	8.2	23
26	A nonsynonymous <i>LNK</i> polymorphism associated with idiopathic erythrocytosis. American Journal of Hematology, 2011, 86, 962-964.	4.1	30
27	FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment. Blood, 2010, 115, 2156-2166.	1.4	53
28	NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO Journal, 2010, 29, 442-456.	7.8	132
29	ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3â^'/â^' mice. EMBO Journal, 2010, 29, 4118-4131.	7.8	126
30	miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes and Development, 2010, 24, 1620-1633.	5.9	192
31	Lnk constrains myeloproliferative diseases in mice. Journal of Clinical Investigation, 2010, 120, 2058-2069.	8.2	94
32	Intracellular signaling by the erythropoietin receptor. , 2009, , 155-174.		13
33	Pivotal role for glycogen synthase kinase–3 in hematopoietic stem cell homeostasis in mice. Journal of Clinical Investigation, 2009, 119, 3519-29.	8.2	109
34	Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. Journal of Clinical Investigation, 2008, 118, 2832-44.	8.2	155
35	Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. Reproductive Medicine and Assisted Reproductive Techniques Series, 2008, , 99-122.	0.1	3
36	<i>JAK2</i> Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. New England Journal of Medicine, 2007, 356, 459-468.	27.0	1,173

Wei Tong

#	Article	IF	CITATIONS
37	Signals emanating from the membrane proximal region of the thrombopoietin receptor (mpl) support hematopoietic stem cell self-renewal. Experimental Hematology, 2007, 35, 1447-1455.	0.4	25
38	The Membrane-proximal Region of the Thrombopoietin Receptor Confers Its High Surface Expression by JAK2-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2006, 281, 38930-38940.	3.4	32
39	Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood, 2005, 105, 4604-4612.	1.4	197
40	Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18962-18967.	7.1	288
41	Lnk Inhibits Tpo–mpl Signaling and Tpo-mediated Megakaryocytopoiesis. Journal of Experimental Medicine, 2004, 200, 569-580.	8.5	169
42	Genetic Evidence for the Interactions of Cyclin D1 and p27 ^{Kip1} in Mice. Molecular and Cellular Biology, 2001, 21, 1319-1328.	2.3	83
43	Progesterone Inhibits Estrogen-Induced Cyclin D1 and cdk4 Nuclear Translocation, Cyclin E- and Cyclin A-cdk2 Kinase Activation, and Cell Proliferation in Uterine Epithelial Cells in Mice. Molecular and Cellular Biology, 1999, 19, 2251-2264.	2.3	156