René van Es

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370815/publications.pdf Version: 2024-02-01

ΡΕΝÃΟ VAN FS

#	Article	IF	CITATIONS
1	Feasibility of Linear Irreversible Electroporation Ablation in the Coronary Sinus. Cardiovascular Engineering and Technology, 2023, 14, 60-66.	1.6	4
2	Characteristics and time course of acute and chronic myocardial lesion formation after electroporation ablation in the porcine model. Journal of Cardiovascular Electrophysiology, 2022, 33, 360-367.	1.7	4
3	Artificial Intelligence to Improve Risk Prediction with Nuclear Cardiac Studies. Current Cardiology Reports, 2022, 24, 307-316.	2.9	4
4	Deep neural networks reveal novel sex-specific electrocardiographic features relevant for mortality risk. European Heart Journal Digital Health, 2022, 3, 245-254.	1.7	6
5	Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning. Netherlands Heart Journal, 2022, 30, 312-318.	0.8	6
6	Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks. Europace, 2022, 24, 1645-1654.	1.7	10
7	Safety and feasibility study of non-invasive robot-assisted high-intensity focused ultrasound therapy for the treatment of atherosclerotic plaques in the femoral artery: protocol for a pilot study. BMJ Open, 2022, 12, e058418.	1.9	2
8	PO-631-07 A NOVEL METHOD FOR EXPLAINABLE DEEP NEURAL NETWORK-BASED INTERPRETATION OF ELECTROCARDIOGRAMS USING VARIATIONAL AUTO-ENCODERS: THE FACTORECG. Heart Rhythm, 2022, 19, S170-S171.	0.7	0
9	PO-658-01 EXPLAINABLE DEEP LEARNING OUTPERFORMS GUIDELINE CRITERIA FOR PREDICTION OF CARDIAC RESYNCHRONIZATION THERAPY OUTCOME. Heart Rhythm, 2022, 19, S274-S275.	0.7	1
10	Explainable deep learning outperforms guideline criteria and QRSarea for prediction of outcome after cardiac resynchronization therapy. Europace, 2022, 24, .	1.7	0
11	Efficacy of multi-electrode linear irreversible electroporation. Europace, 2021, 23, 464-468.	1.7	6
12	<i>In vivo</i> analysis of the origin and characteristics of gaseous microemboli during catheter-mediated irreversible electroporation. Europace, 2021, 23, 139-146.	1.7	13
13	Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009056.	4.8	29
14	Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning. Europace, 2021, 23, .	1.7	0
15	Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms. European Heart Journal Digital Health, 2021, 2, 401-415.	1.7	16
16	Pulmonary vein isolation by irreversible electroporation: an efficacy and safety study in 20 patients with atrial fibrillation. Europace, 2021, 23, .	1.7	0
17	Interpretable uncertainty estimation for automated triage of 12-lead electrocardiogram using deep convolutional neural networks. European Heart Journal, 2021, 42, .	2.2	0
18	Misclassification of sex by deep neural networks reveals novel ECG characteristics that explain a higher risk of mortality in women and in men. European Heart Journal, 2021, 42, .	2.2	2

René van Es

#	Article	IF	CITATIONS
19	Automated Diagnosis of Reduced-Lead Electrocardiograms Using a Shared Classifier. , 2021, , .		1
20	Safety and feasibility of arterial wall targeting with robot-assisted high intensity focused ultrasound: a preclinical study. International Journal of Hyperthermia, 2020, 37, 903-912.	2.5	11
21	Pulmonary Vein Isolation With Single Pulse Irreversible Electroporation. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008192.	4.8	62
22	250Efficacy of multi-electrode linear irreversible electroporation. Europace, 2020, 22, .	1.7	0
23	Development of an algorithm for automatic classification of right ventricle deformation patterns in arrhythmogenic right ventricular cardiomyopathy. Echocardiography, 2020, 37, 698-705.	0.9	2
24	Automatic Triage of 12â€Lead ECGs Using Deep Convolutional Neural Networks. Journal of the American Heart Association, 2020, 9, e015138.	3.7	42
25	Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology. Arrhythmia and Electrophysiology Review, 2020, 9, 146-154.	2.4	22
26	3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging. Journal of Cardiovascular Translational Research, 2019, 12, 517-527.	2.4	4
27	In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. Journal of Cardiovascular Electrophysiology, 2019, 30, 2071-2079.	1.7	26
28	High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform. BioMedical Engineering OnLine, 2019, 18, 75.	2.7	34
29	Validation of a novel stand-alone software tool for image guided cardiac catheter therapy. International Journal of Cardiovascular Imaging, 2019, 35, 225-235.	1.5	7
30	Reply. JACC: Clinical Electrophysiology, 2018, 4, 1482-1483.	3.2	0
31	3D Hybrid Imaging for Structural and Congenital Heart Interventions in the Cath Lab. Structural Heart, 2018, 2, 362-371.	0.6	3
32	Electroporation and its Relevance for Cardiac Catheter Ablation. JACC: Clinical Electrophysiology, 2018, 4, 977-986.	3.2	81
33	Novel method for electrode-tissue contact measurement with multi-electrode catheters. Europace, 2018, 20, 149-156.	1.7	15
34	Acute and Long-Term Effects of Full-Power Electroporation Ablation Directly on the Porcine Esophagus. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	127
35	Distinct fibrosis pattern in desmosomal and phospholamban mutation carriers in hereditary cardiomyopathies. Heart Rhythm, 2017, 14, 1024-1032.	0.7	59
36	3D Whole-heart Myocardial Tissue Analysis. Journal of Visualized Experiments, 2017, , .	0.3	2

René van Es

#	Article	IF	CITATIONS
37	A systematic comparison of cardiovascular magnetic resonance and high resolution histological fibrosis quantification in a chronic porcine infarct model. International Journal of Cardiovascular Imaging, 2017, 33, 1797-1807.	1.5	10
38	Right Ventricular Imaging and Computer Simulation for Electromechanical Substrate Characterization in Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 2185-2197.	2.8	52
39	Real-time correction of respiratory-induced cardiac motion during electroanatomical mapping procedures. Medical and Biological Engineering and Computing, 2016, 54, 1741-1749.	2.8	1
40	Three dimensional fusion of electromechanical mapping and magnetic resonance imaging for real-time navigation of intramyocardial cell injections in a porcine model of chronic myocardial infarction. International Journal of Cardiovascular Imaging, 2016, 32, 833-843.	1.5	10
41	Multimodality infarct identification for optimal image-guided intramyocardial cell injections. Netherlands Heart Journal, 2014, 22, 493-500.	0.8	5
42	Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 913-919.	4.8	77
43	Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 728-733.	4.8	52
44	Epicardial linear electroporation ablation and lesion size. Heart Rhythm, 2014, 11, 1465-1470.	0.7	55
45	High Resolution Systematic Digital Histological Quantification of Cardiac Fibrosis and Adipose Tissue in Phospholamban p.Arg14del Mutation Associated Cardiomyopathy. PLoS ONE, 2014, 9, e94820.	2.5	30