Santiago L Poggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The hidden heterogeneity of agricultural landscapes of the Rolling Pampa (Argentina). Agriculture, Ecosystems and Environment, 2022, 332, 107934.	5.3	1
2	High flower richness and abundance decrease pollen transfer on individual plants in road verges but increase it in adjacent fields in intensively managed agroecosystems. Agriculture, Ecosystems and Environment, 2022, 333, 107952.	5.3	2
3	Network science: Applications for sustainable agroecosystems and food security. Perspectives in Ecology and Conservation, 2022, 20, 79-90.	1.9	7
4	Annual productivity of cropping sequences: Responses to increased intensification levels. European Journal of Agronomy, 2022, 137, 126506.	4.1	6
5	Land cover does not affect microbial and plant response to glyphosate and nitrogen application in the Pampas (Argentina). Applied Soil Ecology, 2021, 160, 103863.	4.3	3
6	Crop type and management are key filtering factors of functional traits in the weed communities of regions with contrasting soils and climates. Applied Vegetation Science, 2021, 24, e12622.	1.9	2
7	Revising the concept of crop health from an agroecological perspective. Agroecology and Sustainable Food Systems, 2020, 44, 215-237.	1.9	4
8	Wider road verges sustain higher plant species richness and pollinator abundance in intensively managed agroecosystems. Agriculture, Ecosystems and Environment, 2020, 302, 107084.	5.3	13
9	Simulation Models on the Ecology and Management of Arable Weeds: Structure, Quantitative Insights, and Applications. Agronomy, 2020, 10, 1611.	3.0	14
10	Parasitoid diversity and parasitism rates in Pampean agricultural mosaics are enhanced by landscape heterogeneity. Insect Conservation and Diversity, 2019, 12, 309-320.	3.0	4
11	Functional groups of plant pathogens in agroecosystems: a review. European Journal of Plant Pathology, 2019, 153, 695-713.	1.7	10
12	Weed Communities in Semiarid Rainfed Croplands of Central Argentina: Comparison between Corn (<i>Zea mays</i>) and Soybean (<i>Glycine max</i>) Crops. Weed Science, 2018, 66, 368-378.	1.5	7
13	Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agriculture, Ecosystems and Environment, 2018, 257, 159-164.	5.3	83
14	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /0 1.9	Overlock 10 T
15	Weed communities respond to changes in the diversity of crop sequence composition and double cropping. Weed Research, 2017, 57, 148-158.	1.7	13
16	Land use intensification in the Rolling Pampa, Argentina: Diversifying crop sequences to increase yields and resource use. European Journal of Agronomy, 2017, 82, 1-10.	4.1	42

17	Structural complexity of arthropod guilds is affected by the agricultural landscape heterogeneity generated by fencerows. Annals of Applied Biology, 2016, 168, 173-184.	2.5	7
18	Frogs taste nice when there are few mice: Do dietary shifts in barn owls result from rapid farming intensification?. Agriculture, Ecosystems and Environment, 2016, 230, 42-46.	5.3	17

2

SANTIAGO L POGGIO

#	Article	IF	CITATIONS
19	Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. Journal of Natural History, 2016, 50, 1175-1196.	0.5	26
20	Productivity and resource use in intensified cropping systems in the Rolling Pampa, Argentina. European Journal of Agronomy, 2015, 67, 37-51.	4.1	49
21	Epigeal arthropod communities in intensively farmed landscapes: Effects of land use mosaics, neighbourhood heterogeneity, and field position. Agriculture, Ecosystems and Environment, 2014, 192, 135-143.	5.3	34
22	Intercropping sunflower and soybean in intensive farming systems: Evaluating yield advantage and effect on weed and insect assemblages. Njas - Wageningen Journal of Life Sciences, 2014, 70-71, 47-52.	7.7	27
23	Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops. Journal of Natural History, 2013, 47, 139-165.	0.5	19
24	The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. Agriculture, Ecosystems and Environment, 2013, 166, 55-64.	5.3	41
25	Species richness and evenness as a function of biomass in arable plant communities. Weed Research, 2011, 51, 241-249.	1.7	29
26	Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodiversity and Conservation, 2011, 20, 2649-2667.	2.6	53
27	Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biological Conservation, 2010, 143, 2477-2486.	4.1	97
28	Weed community structure of mandarin orchards under conventional and integrated management in northern Spain. Agriculture, Ecosystems and Environment, 2007, 119, 305-310.	5.3	19
29	Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agriculture, Ecosystems and Environment, 2005, 109, 48-58.	5.3	113
30	Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. European Journal of Agronomy, 2005, 22, 55-69.	4.1	47
31	Structure of weed communities occurring in pea and wheat crops in the Rolling Pampa (Argentina). Agriculture, Ecosystems and Environment, 2004, 103, 225-235.	5.3	27
32	Agricultural landscape changes through globalisation and biodiversity effects. , 0, , 57-72.		3
33	Reconciling Techno-simplicity and Eco-complexity for future food security. F1000Research, 0, 4, 1507.	1.6	0