
Carmen Espejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of COVID-19 pandemic on frequency of clinical visits, performance of MRI studies, and therapeutic choices in a multiple sclerosis referral centre. Journal of Neurology, 2022, 269, 1764-1772.	3.6	5
2	Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1143.	6.0	17
3	Is humoral and cellular response to SARS-CoV-2 vaccine modified by DMT in patients with multiple sclerosis and other autoimmune diseases?. Multiple Sclerosis Journal, 2022, 28, 1138-1145.	3.0	11
4	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	4.4	18
5	Correcting gut dysbiosis can ameliorate inflammation and promote remyelination in multiple sclerosis – Yes. Multiple Sclerosis Journal, 2021, 27, 1161-1162.	3.0	1
6	Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 685139.	4.8	13
7	Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmunity Reviews, 2021, 20, 102893.	5.8	41
8	Immunomodulatory Effects Associated with Cladribine Treatment. Cells, 2021, 10, 3488.	4.1	14
9	The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal, 2020, 26, 1658-1669.	3.0	41
10	New Algorithms Improving PML Risk Stratification in MS Patients Treated With Natalizumab. Frontiers in Neurology, 2020, 11, 579438.	2.4	9
11	Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2020, 17, 1988-2003.	4.4	7
12	A Commercial Probiotic Induces Tolerogenic and Reduces Pathogenic Responses in Experimental Autoimmune Encephalomyelitis. Cells, 2020, 9, 906.	4.1	31
13	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	7.6	92
14	SOCS1-Derived Peptide Administered by Eye Drops Prevents Retinal Neuroinflammation and Vascular Leakage in Experimental Diabetes. International Journal of Molecular Sciences, 2019, 20, 3615.	4.1	25
15	LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nature Communications, 2019, 10, 2416.	12.8	150
16	Expression of Bone Morphogenetic Proteins in Multiple Sclerosis Lesions. American Journal of Pathology, 2019, 189, 665-676.	3.8	19
17	The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain, 2018, 141, 1075-1084.	7.6	98
18	Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain, Behavior, and Immunity, 2018, 68, 1-10.	4.1	24

Carmen Espejo

#	Article	IF	CITATIONS
19	Blood lymphocyte subsets identify optimal responders to IFN-beta in MS. Journal of Neurology, 2018, 265, 24-31.	3.6	11
20	Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmunity Reviews, 2018, 17, 165-174.	5.8	82
21	GDP- <scp>l</scp> -fucose synthase is a CD4 ⁺ T cell–specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Science Translational Medicine, 2018, 10, .	12.4	71
22	Myeloidâ€derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunology and Cell Biology, 2017, 95, 538-548.	2.3	38
23	Clinical and Histopathological Amelioration of Experimental Autoimmune Encephalomyelitis by AAV Vectors Expressing a Soluble Interleukin-23 Receptor. Neurotherapeutics, 2017, 14, 1095-1106.	4.4	14
24	Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis. Molecular Neurobiology, 2017, 54, 4820-4831.	4.0	28
25	Neurofilament light chain level is a weak risk factor for the development of MS. Neurology, 2016, 87, 1076-1084.	1.1	85
26	Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Experimental Neurology, 2016, 286, 50-60.	4.1	21
27	Differential expression of sema3A and sema7A in a murine model of multiple sclerosis: Implications for a therapeutic design. Clinical Immunology, 2016, 163, 22-33.	3.2	30
28	The only certain measure of the effectiveness of multiple sclerosis therapy is cerebrospinal neurofilament level—NO. Multiple Sclerosis Journal, 2015, 21, 1240-1242.	3.0	4
29	Lipidâ€specific immunoglobulin <scp>M</scp> bands in cerebrospinal fluid are associated with a reduced risk of developing progressive multifocal leukoencephalopathy during treatment with natalizumab. Annals of Neurology, 2015, 77, 447-457.	5.3	48
30	Breast regression protein-39 is not required for experimental autoimmune encephalomyelitis induction. Clinical Immunology, 2015, 160, 133-141.	3.2	6
31	Expression of semaphorin 3A, semaphorin 7A and their receptors in multiple sclerosis lesions. Multiple Sclerosis Journal, 2015, 21, 1632-1643.	3.0	49
32	Myeloid-Derived Suppressor Cells are Generated during Retroviral Transduction of Murine Bone Marrow. Cell Transplantation, 2014, 23, 73-85.	2.5	13
33	Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	5
34	Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis. Clinical and Experimental Immunology, 2014, 175, 202-207.	2.6	5
35	Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity, 2014, 47, 127-133.	2.6	17
36	Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e105737.	2.5	38

CARMEN ESPEJO

#	Article	IF	CITATIONS
37	Semaphorins 3A and 7A: potential immune and neuroregenerative targets in multiple sclerosis. Trends in Molecular Medicine, 2013, 19, 157-164.	6.7	40
38	Inhibition of delta-like ligand 4 decreases Th1/Th17 response in a mouse model of multiple sclerosis. Neuroscience Letters, 2013, 541, 161-166.	2.1	22
39	Serum Biomarker gMS-Classifier2: Predicting Conversion to Clinically Definite Multiple Sclerosis. PLoS ONE, 2013, 8, e59953.	2.5	5
40	Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2012, 9, 139.	7.2	35
41	Heat Shock Protein 70: Roles in Multiple Sclerosis. Molecular Medicine, 2012, 18, 1018-1028.	4.4	52
42	Dalfampridine in multiple sclerosis: From symptomatic treatment to immunomodulation. Clinical Immunology, 2012, 142, 84-92.	3.2	24
43	Implication of the tollâ€like receptor 4 pathway in the response to interferonâ€Î² in multiple sclerosis. Annals of Neurology, 2011, 70, 634-645.	5.3	35
44	Tolerance Induction in Experimental Autoimmune Encephalomyelitis Using Non-myeloablative Hematopoietic Gene Therapy With Autoantigen. Molecular Therapy, 2009, 17, 897-905.	8.2	26
45	Transgene Expression Levels Determine the Immunogenicity of Transduced Hematopoietic Grafts in Partially Myeloablated Mice. Molecular Therapy, 2009, 17, 1904-1909.	8.2	14
46	Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clinical Immunology, 2009, 130, 145-150.	3.2	41
47	Antimyelin Antibodies with No Progression to Multiple Sclerosis. New England Journal of Medicine, 2007, 356, 426-428.	27.0	50
48	Expression of Metallothionein-I, -II, and -III in Alzheimer Disease and Animal Models of Neuroinflammation. Experimental Biology and Medicine, 2006, 231, 1450-1458.	2.4	55
49	The Role of Methallothioneins in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Annals of the New York Academy of Sciences, 2005, 1051, 88-96.	3.8	10
50	CD4-CD8 and CD28 Expression in T Cells Infiltrating the Vitreous Fluidin Patients With Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 2004, 122, 743.	2.4	36
51	Interferon-Î ³ Regulates Oxidative Stress during Experimental Autoimmune Encephalomyelitis. Experimental Neurology, 2002, 177, 21-31.	4.1	22
52	Specific Proliferation Towards Myelin Antigens in Patients with Multiple Sclerosis During a Relapse. Autoimmunity, 2002, 35, 45-50.	2.6	19
53	Treatment with Anti-interferon-Î ³ Monoclonal Antibodies Modifies Experimental Autoimmune Encephalomyelitis in Interferon-Î ³ Receptor Knockout Mice. Experimental Neurology, 2001, 172, 460-468.	4.1	30
54	Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2001, 119, 248-260.	2.3	70