
Debananda Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a novel long-acting 4'-modified nucleoside reverse transcriptase inhibitor against HBV. Journal of Hepatology, 2021, 74, 1075-1086.	3.7	20
2	A small moleculeÂcompound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 2021, 12, 668.	12.8	126
3	GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. MBio, 2020, 11, .	4.1	52
4	Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Scientific Reports, 2020, 10, 10664.	3.3	13
5	CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
6	Novel Protease Inhibitors Containing C-5-Modified <i>bis</i> -Tetrahydrofuranylurethane and Aminobenzothiazole as P2 and P2′ Ligands That Exert Potent Antiviral Activity against Highly Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
7	Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5-tropic HIV-1s. Scientific Reports, 2019, 9, 4828.	3.3	8
8	A novel HIV-1 protease inhibitor, GRL-044, has potent activity against various HIV-1s with an extremely high genetic barrier to the emergence of HIV-1 drug resistance. Global Health & Medicine, 2019, 1, 36-48.	1.4	5
9	Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance. MBio, 2018, 9, .	4.1	36
10	Design and Development of Highly Potent HIV-1 Protease Inhibitors with a Crown-Like Oxotricyclic Core as the P2-Ligand To Combat Multidrug-Resistant HIV Variants. Journal of Medicinal Chemistry, 2017, 60, 4267-4278.	6.4	64
11	A novel central nervous system-penetrating protease inhibitor overcomes human immunodeficiency virus 1 resistance with unprecedented aM to pM potency. ELife, 2017, 6, .	6.0	44
12	C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir. Journal of Virology, 2016, 90, 2180-2194.	3.4	15
13	4′â€modified nucleoside analogs: Potent inhibitors active against entecavirâ€resistant hepatitis B virus. Hepatology, 2015, 62, 1024-1036.	7.3	43
14	Insights into the Mechanism of Inhibition of CXCR4: Identification of Piperidinylethanamine Analogs as Anti-HIV-1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 1895-1904.	3.2	28
15	Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12234-12239.	7.1	70
16	P2′ Benzene Carboxylic Acid Moiety Is Associated with Decrease in Cellular Uptake: Evaluation of Novel Nonpeptidic HIV-1 Protease Inhibitors Containing P2 <i>bis</i> -Tetrahydrofuran Moiety. Antimicrobial Agents and Chemotherapy, 2013, 57, 4920-4927.	3.2	32
17	Loss of the Protease Dimerization Inhibition Activity of Tipranavir (TPV) and Its Association with the Acquisition of Resistance to TPV by HIV-1. Journal of Virology, 2012, 86, 13384-13396.	3.4	26
18	CCR5 inhibitors: emergence, success, and challenges. Expert Opinion on Emerging Drugs, 2012, 17, 135-145.	2.4	40

DEBANANDA DAS

#	Article	IF	CITATIONS
19	Loss of Protease Dimerization Inhibition Activity of Darunavir Is Associated with the Acquisition of Resistance to Darunavir by HIV-1. Journal of Virology, 2011, 85, 10079-10089.	3.4	40
20	<i>In Vitro</i> Selection of Highly Darunavir-Resistant and Replication-Competent HIV-1 Variants by Using a Mixture of Clinical HIV-1 Isolates Resistant to Multiple Conventional Protease Inhibitors. Journal of Virology, 2010, 84, 11961-11969.	3.4	85
21	Involvement of the Second Extracellular Loop and Transmembrane Residues of CCR5 in Inhibitor Binding and HIV-1 Fusion: Insights into the Mechanism of Allosteric Inhibition. Journal of Molecular Biology, 2008, 381, 956-974.	4.2	59
22	Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease Dimerization. Journal of Biological Chemistry, 2007, 282, 28709-28720.	3.4	137
23	Structural and Molecular Interactions of CCR5 Inhibitors with CCR5. Journal of Biological Chemistry, 2006, 281, 12688-12698.	3.4	151