
Julien Bonin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367165/publications.pdf Version: 2024-02-01

ILLIEN RONIN

#	Article	IF	CITATIONS
1	Phenoxazineâ€Sensitized CO ₂ â€toâ€CO Reduction with an Iron Porphyrin Catalyst: A Redox Propertiesâ€Catalytic Performance Study. ChemPhotoChem, 2022, 6, .	3.0	8
2	2022 roadmap on low temperature electrochemical CO ₂ reduction. JPhys Energy, 2022, 4, 042003.	5.3	76
3	Carbon Dioxide Reduction to Methanol with a Molecular Cobaltâ€Catalystâ€Loaded Porous Carbon Electrode Assisted by a CIGS Photovoltaic Cell**. ChemPhotoChem, 2021, 5, 705-710.	3.0	4
4	Hybridization of Molecular and Graphene Materials for CO ₂ Photocatalytic Reduction with Selectivity Control. Journal of the American Chemical Society, 2021, 143, 8414-8425.	13.7	64
5	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	30.2	253
6	Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coordination Chemistry Reviews, 2021, 443, 214018.	18.8	43
7	Molecular catalysis of CO ₂ reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chemical Society Reviews, 2020, 49, 5772-5809.	38.1	233
8	Efficient Visible-Light-Driven CO ₂ Reduction by a Cobalt Molecular Catalyst Covalently Linked to Mesoporous Carbon Nitride. Journal of the American Chemical Society, 2020, 142, 6188-6195.	13.7	199
9	Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies. Dalton Transactions, 2019, 48, 5869-5878.	3.3	15
10	Toward Visible-Light Photochemical CO ₂ -to-CH ₄ Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis. Journal of Physical Chemistry C, 2018, 122, 13834-13839.	3.1	38
11	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	13.7	150
12	Non-sensitized selective photochemical reduction of CO ₂ to CO under visible light with an iron molecular catalyst. Chemical Communications, 2017, 53, 2830-2833.	4.1	100
13	Visibleâ€light Homogeneous Photocatalytic Conversion of CO ₂ into CO in Aqueous Solutions with an Iron Catalyst. ChemSusChem, 2017, 10, 4447-4450.	6.8	83
14	Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548, 74-77.	27.8	730
15	Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coordination Chemistry Reviews, 2017, 334, 184-198.	18.8	195
16	Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation. Journal of Power Sources, 2016, 324, 253-260.	7.8	34
17	A Case for Electrofuels. ACS Energy Letters, 2016, 1, 1062-1064.	17.4	39
18	Photoremoval of Protecting Groups: Mechanistic Aspects of 1,3-Dithiane Conversion to a Carbonyl Group. Journal of Organic Chemistry, 2015, 80, 2733-2739.	3.2	17

Julien Bonin

#	Article	IF	CITATIONS
19	Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO ₂ with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center. Journal of the American Chemical Society, 2015, 137, 10918-10921.	13.7	294
20	Homogeneous Photocatalytic Reduction of CO ₂ to CO Using Iron(0) Porphyrin Catalysts: Mechanism and Intrinsic Limitations. ChemCatChem, 2014, 6, 3200-3207.	3.7	121
21	Selective and Efficient Photocatalytic CO ₂ Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst. Journal of the American Chemical Society, 2014, 136, 16768-16771.	13.7	275
22	Proton-Coupled Electron Transfers: pH-Dependent Driving Forces? Fundamentals and Artifacts. Journal of the American Chemical Society, 2013, 135, 14359-14366.	13.7	33
23	Transient absorption spectroscopy studies of proton-coupled electron transfers. Neuroscience of Decision Making, 2013, 1, .	1.3	10
24	Hydrogen-Bond Relays in Concerted Proton–Electron Transfers. Accounts of Chemical Research, 2012, 45, 372-381.	15.6	84
25	Pyridine as proton acceptor in the concerted proton electron transfer oxidation of phenol. Organic and Biomolecular Chemistry, 2011, 9, 4064.	2.8	29
26	Water (in Water) as an Intrinsically Efficient Proton Acceptor in Concerted Proton Electron Transfers. Journal of the American Chemical Society, 2011, 133, 6668-6674.	13.7	65
27	Photoinduced Protonâ€Coupled Electron Transfers in Biorelevant Phenolic Systems. Photochemistry and Photobiology, 2011, 87, 1190-1203.	2.5	36
28	Intrinsic reactivity and driving force dependence in concerted proton–electron transfers to water illustrated by phenol oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3367-3372.	7.1	71
29	Photoinduced reductive cleavage of some chlorobenzylic compounds. New insights from comparison with electrochemically induced reactions. Physical Chemistry Chemical Physics, 2009, 11, 10275.	2.8	6
30	Comparison of solvation dynamics of electrons in four polyols. Radiation Physics and Chemistry, 2008, 77, 1183-1189.	2.8	5
31	Formation and solvation dynamics of electrons in polyols. Journal of Molecular Liquids, 2008, 141, 124-129.	4.9	9
32	Solvation Dynamics of Electron Produced by Two-Photon Ionization of Liquid Polyols. III. Glycerol. Journal of Physical Chemistry A, 2008, 112, 1880-1886.	2.5	18
33	Reaction of the Hydroxyl Radical with Phenol in Water Up to Supercritical Conditions. Journal of Physical Chemistry A, 2007, 111, 1869-1878.	2.5	69
34	Solvation Dynamics of Electron Produced by Two-Photon Ionization of Liquid Polyols. II. Propanediols. Journal of Physical Chemistry A, 2007, 111, 4902-4913.	2.5	18
35	Solvation Dynamics of the Electron Produced by Two-Photon Ionization of Liquid Polyols. 1. Ethylene Glycol. Journal of Physical Chemistry A, 2006, 110, 1705-1717.	2.5	26
36	Absorption spectrum of the hydrated electron paired with nonreactive metal cations. Radiation Physics and Chemistry, 2005, 74, 288-296.	2.8	29

#	Article	IF	CITATIONS
37	First Observation of Electron Paired with Divalent and Trivalent Nonreactive Metal Cations in Water. Journal of Physical Chemistry A, 2004, 108, 6817-6819.	2.5	16
38	Solvated Electron Pairing with Earth Alkaline Metals in THF 2Reactivity of the (MgII, es-) Pair with Aromatic and Halogenated Hydrocarbon Compounds. Journal of Physical Chemistry A, 2003, 107, 6587-6593.	2.5	17