
Takahiko Kojima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366616/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors. Journal of Materials Chemistry, 2008, 18, 1427.	6.7	306
2	Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. Journal of the American Chemical Society, 1993, 115, 11328-11335.	13.7	234
3	Visible-Light-Driven Photocatalytic CO ₂ Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production. Journal of the American Chemical Society, 2017, 139, 6538-6541.	13.7	181
4	Charge separation in metallomacrocycle complexes linked with electron acceptors by axial coordination. Dalton Transactions, 2009, , 3880.	3.3	154
5	Ruthenium atalyzed Selective and Efficient Oxygenation of Hydrocarbons with Water as an Oxygen Source. Angewandte Chemie - International Edition, 2008, 47, 5772-5776.	13.8	133
6	A Discrete Supramolecular Conglomerate Composed of Two Saddleâ€Distorted Zinc(II)â€Phthalocyanine Complexes and a Doubly Protonated Porphyrin with Saddle Distortion Undergoing Efficient Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2008, 47, 6712-6716.	13.8	103
7	Efficient Photocatalytic CO ₂ Reduction by a Ni(II) Complex Having Pyridine Pendants through Capturing a Mg ²⁺ Ion as a Lewis-Acid Cocatalyst. Journal of the American Chemical Society, 2019, 141, 20309-20317.	13.7	102
8	Synthesis and Characterization of Mononuclear and Dinuclear Ruthenium Complexes with Tris(2-pyridylmethyl)amine and Tris(5-methyl-2-pyridylmethyl)amine. Inorganic Chemistry, 1998, 37, 4076-4085.	4.0	97
9	Formation of a Ruthenium(IV)-Oxo Complex by Electron-Transfer Oxidation of a Coordinatively Saturated Ruthenium(II) Complex and Detection of Oxygen-Rebound Intermediates in C–H Bond Oxygenation. Journal of the American Chemical Society, 2011, 133, 11692-11700.	13.7	97
10	Structures and photoinduced electron transfer of protonated complexes of porphyrins and metallophthalocyanines. Coordination Chemistry Reviews, 2012, 256, 2488-2502.	18.8	91
11	A Directly Linked Ferrocene–Naphthalenediimide Conjugate: Precise Control of Stacking Structures of Ï€â€&ystems by Redox Stimuli. Angewandte Chemie - International Edition, 2013, 52, 9167-9171.	13.8	87
12	Proton-Coupled Electron-Transfer Reduction of Dioxygen Catalyzed by a Saddle-Distorted Cobalt Phthalocyanine. Journal of the American Chemical Society, 2012, 134, 4196-4206.	13.7	81
13	A discrete conglomerate of a distorted Mo(v)-porphyrin with a directly coordinated keggin-type polyoxometalate. Chemical Communications, 2007, , 3997.	4.1	80
14	Supramolecular Structures and Photoelectronic Properties of the Inclusion Complex of a Cyclic Freeâ€Base Porphyrin Dimer and C ₆₀ . Chemistry - A European Journal, 2010, 16, 11611-11623.	3.3	79
15	Mechanistic insight into catalytic oxidations of organic compounds by ruthenium(iv)-oxo complexes with pyridylamine ligands. Chemical Science, 2012, 3, 3421.	7.4	79
16	A Lowâ€Spin Ruthenium(IV)–Oxo Complex: Does the Spin State Have an Impact on the Reactivity?. Angewandte Chemie - International Edition, 2010, 49, 8449-8453.	13.8	76
17	A Porphyrin Nanotube: Size-Selective Inclusion of Tetranuclear Molybdenum–Oxo Clusters. Angewandte Chemie - International Edition, 2004, 43, 1825-1828.	13.8	75
18	Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co ^{III} –Pyridylmethylamine Complex. Inorganic Chemistry, 2016, 55, 1154-1164.	4.0	73

#	Article	IF	CITATIONS
19	Metal–Oxyl Species and Their Possible Roles in Chemical Oxidations. Inorganic Chemistry, 2019, 58, 9517-9542.	4.0	73
20	Structure and Photoinduced Electron Transfer Dynamics of a Series of Hydrogen-Bonded Supramolecular Complexes Composed of Electron Donors and a Saddle-Distorted Diprotonated Porphyrin. Journal of the American Chemical Society, 2010, 132, 10155-10163.	13.7	70
21	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	3.3	67
22	Porphyrin Nanotubes Based on Self-Assembly of Mo(V)â^'Dodecaphenylporphyrin Complexes and Inclusion of Moâ^'Oxo Clusters:Â Synthesis and Characterization by X-ray Crystallography and Transmission Electron Microscopy. Chemistry of Materials, 2007, 19, 51-58.	6.7	66
23	Reorganization Energies of Diprotonated and Saddle-Distorted Porphyrins in Photoinduced Electron-Transfer Reduction Controlled by Conformational Distortion. Journal of the American Chemical Society, 2009, 131, 577-584.	13.7	65
24	Proton-Coupled Electron Transfer of Ruthenium(III)â´'Pterin Complexes: A Mechanistic Insight. Journal of the American Chemical Society, 2009, 131, 11615-11624.	13.7	64
25	Selective Inclusion of Electronâ€Donating Molecules into Porphyrin Nanochannels Derived from the Selfâ€Assembly of Saddleâ€Distorted, Protonated Porphyrins and Photoinduced Electron Transfer from Guest Molecules to Porphyrin Dications. Chemistry - A European Journal, 2007, 13, 8714-8725.	3.3	63
26	Characteristics and reactivity of ruthenium–oxo complexes. Dalton Transactions, 2016, 45, 16727-16750.	3.3	62
27	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. Coordination Chemistry Reviews, 2017, 333, 44-56.	18.8	62
28	Preparation and proton transport property of N,N′- diethyldithiooxamidatocopper coordination polymer. Synthetic Metals, 2005, 154, 89-92.	3.9	58
29	Multiply-fused porphyrins—effects of extended π-conjugation on the optical and electrochemical properties. Chemical Communications, 2013, 49, 5939.	4.1	56
30	Impact of Distortion of Porphyrins on Axial Coordination in (Porphyrinato)zinc(II) Complexes with Aminopyridines as Axial Ligands. European Journal of Inorganic Chemistry, 2009, 2009, 727-734.	2.0	52
31	Crystal structures and properties of a monoprotonated porphyrin. Chemical Communications, 2009, , 4994.	4.1	52
32	Anisotropic High Electron Mobility and Photodynamics of a Self-Assembled Porphyrin Nanotube Including C ₆₀ Molecules. Journal of Physical Chemistry C, 2009, 113, 19694-19699.	3.1	49
33	Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity. Chemistry - A European Journal, 2013, 19, 1563-1567.	3.3	49
34	Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S ₂ N ₂ -Type Tetradentate Ligands. Inorganic Chemistry, 2018, 57, 7180-7190.	4.0	47
35	Catalytic hydrocarbon oxygenation by ruthenium–pyridylamine complexes with alkyl hydroperoxides: a mechanistic insight. Inorganica Chimica Acta, 2000, 300-302, 661-667.	2.4	46
36	Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. Journal of Biological Inorganic Chemistry, 2008, 13, 321-333.	2.6	46

#	Article	IF	CITATIONS
37	Photoconductivity of Porphyrin Nanochannels Composed of Diprotonated Porphyrin Dications with Saddle Distortion and Electron Donors. Chemistry of Materials, 2008, 20, 7492-7500.	6.7	46
38	Photochemical and Thermal Isomerization of a Ruthenium(II)â^'Alloxazine Complex Involving an Unusual Coordination Mode. Journal of the American Chemical Society, 2008, 130, 1556-1557.	13.7	45
39	Crystal Structures and Electronic Properties of Saddleâ€Distorted and Protonated Phthalocyanines. Angewandte Chemie - International Edition, 2011, 50, 2725-2728.	13.8	45
40	A porphyrin nanochannel: formation of cationic channels by a protonated saddle-distorted porphyrin and its inclusion behavior. Chemical Communications, 2005, , 716.	4.1	42
41	Ring-fused porphyrins: extension of ĩ€-conjugation significantly affects the aromaticity and optical properties of the porphyrin ĩ€-systems and the Lewis acidity of the central metal ions. Physical Chemistry Chemical Physics, 2015, 17, 15001-15011.	2.8	41
42	Synthesis and Characterization of Mononuclear Ruthenium(III) Pyridylamine Complexes and Mechanistic Insights into Their Catalytic Alkane Functionalization with <i>m</i> â€Chloroperbenzoic Acid. Chemistry - A European Journal, 2007, 13, 8212-8222.	3.3	40
43	A supramolecular photocatalyst composed of a polyoxometalate and a photosensitizing water-soluble porphyrin diacid for the oxidation of organic substrates in water. Green Chemistry, 2018, 20, 1975-1980.	9.0	38
44	Synthesis and Characterization of [RuIIICl2(TPA)]+(TPA = Tris(2-pyridylmethyl)amine) and Its Reactivity toward Alkane Functionalization. Chemistry Letters, 1996, 25, 121-122.	1.3	37
45	Construction of Sn ^{IV} Porphyrin/Trinuclear Ruthenium Cluster Dyads Linked by Pyridine Carboxylates: Photoinduced Electron Transfer in the Marcus Inverted Region. Chemistry - A European Journal, 2010, 16, 3646-3655.	3.3	37
46	Formation of a Long-Lived Photoinduced Electron-Transfer State in an Electron Acceptorâ ''Donorâ ''Acceptor Porphyrin Triad Connected by Coordination Bonds. Journal of Physical Chemistry C, 2010, 114, 14290-14299.	3.1	37
47	Formation and characterization of a reactive chromium(<scp>v</scp>)–oxo complex: mechanistic insight into hydrogen-atom transfer reactions. Chemical Science, 2015, 6, 945-955.	7.4	37
48	Toward a Photochemical and Thermal Molecular Machine:Â Reversible Ligand Dissociation and Binding in a Ruthenium(II)-2,2â€~-bipyridine Complex with Tris(2-pyridylmethyl)amine. Inorganic Chemistry, 2004, 43, 2243-2245.	4.0	36
49	Remarkable enhancement of catalytic activity of a 2 : 1 complex between a non-planar Mo(v)–porphy and a ruthenium-substituted Keggin-type heteropolyoxometalate in catalytic oxidation of benzyl alcohols. Dalton Transactions, 2012, 41, 10006.	rin 3.3	35
50	Crystal Structures and Solution Properties of Discrete Complexes Composed of Saddle-Distorted Molybdenum(V)-Dodecaphenylporphyrins and Keggin-Type Heteropolyoxometalates Linked by Direct Coordination. Inorganic Chemistry, 2010, 49, 11190-11198.	4.0	34
51	Photochemical Activation of Ruthenium(II)–Pyridylamine Complexes Having a Pyridine- <i>N</i> -Oxide Pendant toward Oxygenation of Organic Substrates. Journal of the American Chemical Society, 2011, 133, 17901-17911.	13.7	34
52	A Ruthenium(III)–Oxyl Complex Bearing Strong Radical Character. Angewandte Chemie - International Edition, 2016, 55, 14041-14045.	13.8	34
53	Hydrogen atom abstraction reactions independent of C–H bond dissociation energies of organic substrates in water: significance of oxidant–substrate adduct formation. Chemical Science, 2014, 5, 1429-1436.	7.4	33
54	Control of electron-transfer reduction by protonation of zinc octabutoxyphthalocyanine assisted by intramolecular hydrogen bonding. Chemical Communications, 2011, 47, 7986.	4.1	32

#	Article	IF	CITATIONS
55	Structures and Properties of Ruthenium(II) Complexes of Pyridylamine Ligands with Oxygen-Bound Amide Moieties:Â Regulation of Structures and Proton-Coupled Electron Transfer. Inorganic Chemistry, 2004, 43, 6793-6804.	4.0	31
56	Synthesis of a One-Dimensional Metal-Dimer Assembled System with Interdimer Interaction, M2(dtp)4 (M = Ni, Pd; dtp = Dithiopropionato). Inorganic Chemistry, 2006, 45, 322-327.	4.0	31
57	Formation of a Hybrid Compound Composed of a Saddle-Distorted Tin(IV)â^Porphyrin and a Keggin-Type Heteropolyoxometalate To Undergo Intramolecular Photoinduced Electron Transfer. Journal of Physical Chemistry A, 2011, 115, 986-997.	2.5	31
58	Ruthenium(II) Pyridylamine Complexes with Diimine Ligands Showing Reversible Photochemical and Thermal Structural Change. Chemistry - A European Journal, 2008, 14, 8904-8915.	3.3	30
59	Intermolecular and Intracomplex Photoinduced Electron Transfer from Planar and Nonplanar Metalloporphyrins to <i>p</i> â€Quinones. Chemistry - A European Journal, 2011, 17, 12372-12384.	3.3	30
60	Mechanistic Insight into Concerted Proton–Electron Transfer of a Ru(IV)-Oxo Complex: A Possible Oxidative Asynchronicity. Journal of the American Chemical Society, 2020, 142, 16982-16989.	13.7	30
61	Modulation of Characteristics of a Ruthenium-Coordinated Flavin Analogue That Shows an Unusual Coordination Mode. Angewandte Chemie - International Edition, 2007, 46, 905-908.	13.8	29
62	Proton-Coupled Electron Transfer in Ruthenium(II)â^'Pterin Complexes:  Formation of Ruthenium-Coordinated Pterin Radicals and Their Electronic Structures. Inorganic Chemistry, 2008, 47, 333-343.	4.0	29
63	A Ruthenium Pterin Complex Showing Proton-Coupled Electron Transfer: Synthesis and Characterization. Angewandte Chemie - International Edition, 2003, 42, 4951-4954.	13.8	28
64	Supramolecular Interaction of Fullerenes with a Curved Ï€â€Surface of a Monomeric Quadruply Ringâ€Fused Porphyrin. Chemistry - A European Journal, 2015, 21, 5302-5306.	3.3	28
65	Conformational Dynamics of Monomer―versus Dimerâ€like Features in a Naphthalenediimideâ€Based Conjugated Cyclophane. Angewandte Chemie - International Edition, 2020, 59, 5254-5258.	13.8	28
66	A Novel and Highly Effective Halogenation of Alkanes with Halides on Oxidation with m-Chloroperbenzoic Acid: Looks Old, but New Reaction. Chemistry Letters, 1998, 27, 1085-1086.	1.3	26
67	Photocatalytic Formation of Dimethyllepidopterene from 9,10-Dimethylanthracene via Electron-Transfer Oxidation. Organic Letters, 2006, 8, 6079-6082.	4.6	26
68	Synthesis and Characterization of Novel Ferrocene-Containing Pyridylamine Ligands and Their Ruthenium(II) Complexes:  Electronic Communication through Hydrogen-Bonded Amide Linkage. Inorganic Chemistry, 2008, 47, 886-895.	4.0	25
69	Oxidation of Organic Substrates with RuIV=O Complexes Formed by Proton-Coupled Electron Transfer. Synlett, 2014, 25, 1667-1679.	1.8	25
70	Structures and Magnetic Properties of Some Fe(III) Complexes with Hexadentate Ligands: in Connection with Spin-Crossover Behavior. Bulletin of the Chemical Society of Japan, 1997, 70, 3001-3009.	3.2	22
71	Mechanistic Insights into C–H Oxidations by Ruthenium(III)-Pterin Complexes: Impact of Basicity of the Pterin Ligand and Electron Acceptability of the Metal Center on the Transition States. Journal of the American Chemical Society, 2016, 138, 9508-9520.	13.7	22
72	Peptide Cross-linkers: Immobilization of Platinum Nanoparticles Highly Dispersed on Graphene Oxide Nanosheets with Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 2017, 9, 9996-10002.	8.0	22

#	Article	IF	CITATIONS
73	Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation. Inorganic Chemistry, 2019, 58, 3676-3682.	4.0	22
74	Enhancement of 4-electron O ₂ reduction by a Cu(<scp>ii</scp>)–pyridylamine complex via protonation of a pendant pyridine in the second coordination sphere in water. Chemical Communications, 2015, 51, 13385-13388.	4.1	21
75	Intramolecular Rearrangement for Regioselective Complexation by Intramolecular CH/? Interaction in a Hydrophobic Cavity of a Ruthenium Coordination Sphere. Chemistry - A European Journal, 2004, 10, 6402-6410.	3.3	20
76	Synthesis, characterization, and distortion properties of vanadyl complexes of octaphenylporphyrin and dodecaphenylporphyrin. Inorganica Chimica Acta, 2005, 358, 489-496.	2.4	20
77	Synthesis and characterization of chromium(III) octaphenylporphyrin complexes with various axial ligands: An insight into porphyrin distortion. Inorganica Chimica Acta, 2005, 358, 2489-2500.	2.4	20
78	Proton-Coupled Electron Shuttling in a Covalently Linked Ruthenium–Copper Heterodinuclear Complex. Journal of the American Chemical Society, 2011, 133, 18570-18573.	13.7	20
79	Reactivity of a Ru(iii)–hydroxo complex in substrate oxidation in water. Chemical Communications, 2014, 50, 15018-15021.	4.1	20
80	Cooperative Effects of Heterodinuclear Ir ^{III} –M ^{II} Complexes on Catalytic H ₂ Evolution from Formic Acid Dehydrogenation in Water. Inorganic Chemistry, 2020, 59, 11976-11985.	4.0	19
81	Long-Range Order in Supramolecular π Assemblies in Discrete Multidecker Naphthalenediimides. Journal of the American Chemical Society, 2021, 143, 3238-3244.	13.7	19
82	Catalytic Oxidative Cracking of Benzene Rings in Water. ACS Catalysis, 2019, 9, 671-678.	11.2	18
83	Cleavage of the Nb:O Bond of Oxoniobium(V) Porphyrins. Synthesis and Characterization of Novel Niobium(V) Porphyrins with Two Distinct Catechols. Inorganic Chemistry, 1995, 34, 4888-4895.	4.0	17
84	Formation of dodecaphenylporphodimethene via facile protonation of saddle-distorted dodecaphenylporphyrin. Chemical Communications, 2008, , 6513.	4.1	17
85	Photoinduced electron transfer in supramolecular assemblies involving saddle-distorted porphyrins and phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2009, 13, 14-21.	0.8	17
86	Identification of Intermediates in Peroxidase Catalytic Cycle of a DNAzyme Possessing Heme. Bulletin of the Chemical Society of Japan, 2019, 92, 1729-1736.	3.2	17
87	Dioxygen/Hydrogen Peroxide Interconversion Using Redox Couples of Saddle-Distorted Porphyrins and Isophlorins. Journal of the American Chemical Society, 2019, 141, 5987-5994.	13.7	17
88	Catalytic Hydrocarbon Oxygenation by a Dinuclear Ruthenium(II) Complex with Molecular Oxygen. Chemistry Letters, 1999, 28, 81-82.	1.3	16
89	Redox-Noninnocent Behavior of Tris(2-pyridylmethyl)amine Bound to a Lewis Acidic Rh(III) Ion Induced by C–H Deprotonation. Journal of the American Chemical Society, 2015, 137, 11222-11225.	13.7	16
90	Efficient Near-Infrared Light-Driven Hydrogen Evolution Catalyzed by a Saddle-Distorted Porphyrin as a Photocatalyst. ACS Applied Energy Materials, 2020, 3, 3193-3197.	5.1	16

#	Article	IF	CITATIONS
91	Photocatalytic Carbon Dioxide Reduction Using Nickel Complexes as Catalysts. ChemPhotoChem, 2021, 5, 512-520.	3.0	15
92	Proton Shift upon Oneâ€Electron Reduction in Ruthenium(II) oordinated Pterins. Angewandte Chemie - International Edition, 2008, 47, 9669-9672.	13.8	14
93	Synthesis and Characterization of an Azido-Bridged Dinuclear Ruthenium(II) Polypyridylamine Complex Forming a Mixed-Valence State. Inorganic Chemistry, 2013, 52, 5507-5514.	4.0	14
94	Synthesis and Characterization of Ruthenium(II)–Nitrile Complexes with Bisamide-tpa Ligands (tpa =) Tj ETQqC	0.0 rgBT 3.2	/Oygrlock 10
95	Synthesis and Characterization of Ruthenium(II)â^'Pyridylamine Complexes with Catechol Pendants as Metal Binding Sites. Inorganic Chemistry, 2010, 49, 3737-3745.	4.0	13
96	Thermodynamics and Photodynamics of a Monoprotonated Porphyrin Directly Stabilized by Hydrogen Bonding with Polar Protic Solvents. Chemistry - A European Journal, 2017, 23, 4669-4679.	3.3	13
97	Acid–Base Properties of a Freebase Form of a Quadruply Ring-Fused Porphyrin—Stepwise Protonation Induced by Rigid Ring-Fused Structure. Journal of Organic Chemistry, 2017, 82, 322-330.	3.2	13
98	Intermediate-Spin Iron(III) Complexes Having a Redox-Noninnocent Macrocyclic Tetraamido Ligand. Inorganic Chemistry, 2018, 57, 9683-9695.	4.0	13
99	Efficient photocatalytic proton-coupled electron-transfer reduction of O ₂ using a saddle-distorted porphyrin as a photocatalyst. Chemical Communications, 2019, 55, 4925-4928.	4.1	13
100	A Ruthenium(II)-Pyridylamine Complex Showing a Fluxional Intramolecular π–π Interaction. Chemistry Letters, 2000, 29, 1008-1009.	1.3	12
101	Mechanistic Insights into Photochromic Behavior of a Ruthenium(II)–Pterin Complex. Chemistry - A European Journal, 2011, 17, 6652-6662.	3.3	12
102	Fundamental electron-transfer and proton-coupled electron-transfer properties of Ru(iv)-oxo complexes. Dalton Transactions, 2019, 48, 13154-13161.	3.3	12
103	Chiral induction upon coordination to form an enantiomeric bis-chelate ruthenium(II)–tris(3-methyl-2-pyridylmethyl)amine complex. Dalton Transactions RSC, 2001, , 958-960.	2.3	11
104	Enclosure of a Keggin-type heteropolyoxometalate into a tubular π-space via hydrogen bonds with a nonplanar Mo(v)-porphyrin complex forming a supramolecular assembly. Dalton Transactions, 2011, 40, 6445.	3.3	11
105	Porphyrin nanochannels reinforced by hydrogen bonding. Chemical Communications, 2012, 48, 6481.	4.1	11
106	Quartet formation of a guanine derivative with an isopropyl group: crystal structures of "naked― G-quartets and thermodynamics of G-quartet formation. Organic and Biomolecular Chemistry, 2013, 11, 758-764.	2.8	11
107	Substituent Effects at the \hat{l}^2 -Positions of the Nonfused Pyrroles in a Quadruply Fused Porphyrin on the Structure and Optical and Electrochemical Properties. Inorganic Chemistry, 2018, 57, 1106-1115.	4.0	11
108	Photocatalytic hydrogen evolution using a Ru(ii)-bound heteroaromatic ligand as a reactive site. Dalton Transactions, 2020, 49, 17230-17242.	3.3	11

#	Article	IF	CITATIONS
109	Development of functionality of metal complexes based on proton-coupled electron transfer. Dalton Transactions, 2020, 49, 7284-7293.	3.3	11
110	Observation of radical intermediates for unusual carbon-nitrogen bond formation of .alphaaminomalonate to give an .alphadiamine linkage. ESR studies on electron transfer reactions in cobalt(III)-polyamine complexes. Inorganic Chemistry, 1992, 31, 2333-2340.	4.0	10
111	Theoretical Study of Oxidation of Cyclohexane Diol to Adipic Anhydride by [RuIV(O)(tpa)(H2O)]2+Complex (tpa â••Tris(2-pyridylmethyl)amine). Inorganic Chemistry, 2011, 50, 6200-6209.	4.0	10
112	Controlling the redox properties of a pyrroloquinolinequinone (PQQ) derivative in a ruthenium(<scp>ii</scp>) coordination sphere. Dalton Transactions, 2015, 44, 3151-3158.	3.3	10
113	Formation and Isolation of a Fourâ€Electronâ€Reduced Porphyrin Derivative by Reduction of a Stable 20Ï€ Isophlorin. Angewandte Chemie - International Edition, 2018, 57, 1973-1977.	13.8	10
114	Study on Proton-Coupled Electron Transfer in Transition Metal Complexes. Bulletin of the Chemical Society of Japan, 2020, 93, 1571-1582.	3.2	10
115	Synthesis and characterization of cobalt(III) complexes containing .alphadiamine and carbinolamine derived from .alphaaminomalonate and ethylenediamine. Inorganic Chemistry, 1990, 29, 446-450.	4.0	9
116	Synthesis and characterization of a novel macrocyclic ligand containing catechol donor groups and its oxovanadium(IV) complex. Polyhedron, 2000, 19, 1167-1172.	2.2	9
117	A triangular prismatic hexanuclear iridium(<scp>iii</scp>) complex bridged by flavin analogues showing reversible redox processes. Dalton Transactions, 2013, 42, 2773-2778.	3.3	9
118	Novel cofacial oxidative coupling reaction of phosphinine in the presence of Cu(i) and ClO4â [~] . Chemical Communications, 2004, , 366-367.	4.1	8
119	Heteronuclear Ru ^{II} Ag ^I Complexes Having a Pyrroloquinolinequinone Derivative as a Bridging Ligand. Inorganic Chemistry, 2013, 52, 2274-2276.	4.0	8
120	Importance of the Reactant-State Potentials of Chromium(V)–Oxo Complexes to Determine the Reactivity in Hydrogen-Atom Transfer Reactions. Inorganic Chemistry, 2018, 57, 13929-13936.	4.0	8
121	Excellent Oxygen Reduction Reaction Performance in Self-Assembled Amyloid-β/Platinum Nanoparticle Hybrids with Effective Platinum–Nitrogen Bond Formation. ACS Applied Energy Materials, 2019, 2, 6536-6541.	5.1	8
122	Formation of a Ruthenium(V)—Imido Complex and the Reactivity in Substrate Oxidation in Water through the Nitrogen Non-Rebound Mechanism. Inorganic Chemistry, 2019, 58, 12815-12824.	4.0	8
123	Selective catalytic 2e ^{â^`} -oxidation of organic substrates by an Fe ^{II} complex having an N-heterocyclic carbene ligand in water. Chemical Communications, 2020, 56, 9783-9786.	4.1	8
124	Unprecedented imido-bridged binuclear cobalt(III) complex: synthesis and molecular structure of p-[Co2(.mu(.mu.2-N:.eta.1-O,O')-imidomalonato)(tren)2](ClO4)3.cntdot.H2O. Journal of the American Chemical Society, 1990, 112, 4576-4577.	13.7	7
125	A tetranuclear iridium(iii) complex with a flavin analogue as a bridging ligand in different coordination modes and exchangeable anion encapsulation in a supramolecular cage. Chemical Communications, 2009, , 6643.	4.1	7
126	Binding of Scandium Ions to Metalloporphyrin–Flavin Complexes for Long‣ived Charge Separation. Chemistry - A European Journal, 2014, 20, 15518-15532.	3.3	7

#	Article	IF	CITATIONS
127	Formation of supramolecular hetero-triads by controlling the hydrogen bonding of conjugate bases with a diprotonated porphyrin based on electrostatic interaction. Chemical Communications, 2017, 53, 6359-6362.	4.1	7
128	Ruthenium(II) Complexes Having a Pincerâ€Type Ligand with Two <i>N</i> â€Heterocyclic Carbene Moieties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 611-615.	1.2	7
129	Conformational Dynamics of Monomer―versus Dimerâ€like Features in a Naphthalenediimideâ€Based Conjugated Cyclophane. Angewandte Chemie, 2020, 132, 5292-5296.	2.0	7
130	Syntheses and characterization of complexes derived from .alphaaminomalonate and trans-[CoCl2(2,3,2-tet)]+ (2,3,2-tet = 1,9-diamino-3,7-diazanonane). Inorganic Chemistry, 1991, 30, 4535-4541.	4.0	6
131	An Efficient Method for the Synthesis of 4,5-Disubstituted Catechols. Bulletin of the Chemical Society of Japan, 2000, 73, 747-748.	3.2	6
132	{N-[Bis(2-pyridyl)methyl]-N,N-bis(2-pyridylmethyl)amine-κ5N}chlororuthenium(II) perchlorate methanol solvate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m226-m228.	0.2	6
133	Cooperative catalysis of a trinuclear ruthenium(II) complex in transfer hydrogenation of ketones by formic acid. Inorganica Chimica Acta, 2011, 374, 104-111.	2.4	6
134	Regulation of Redox Potential of a Pterin Derivative Bound to a Ruthenium(II) Complex by Intermolecular Hydrogen Bonding with Nucleobases. Angewandte Chemie - International Edition, 2012, 51, 4623-4627.	13.8	6
135	Control of the spatial arrangements of supramolecular networks based on saddle-distorted porphyrins by intermolecular hydrogen bonding. Dalton Transactions, 2013, 42, 16073.	3.3	6
136	Formation of a supramolecular assembly between a Na+-templated G-quartet and a Ni(ii)–porphyrin complex. Dalton Transactions, 2013, 42, 3779.	3.3	6
137	Complete Photochromic Structural Changes in Ruthenium(II)Diimine Complexes, Based on Control of the Excited States by Metalation. Chemistry - A European Journal, 2013, 19, 8978-8990.	3.3	6
138	A Diprotonated Porphyrin as an Electron Mediator in Photoinduced Electron Transfer in Hydrogen-Bonded Supramolecular Assemblies. Journal of Physical Chemistry C, 2019, 123, 11529-11538.	3.1	6
139	Concerted regulation of intermolecular carbon-nitrogen bond formation of .alphaaminomalonate with trans-[CoCl2(1,10-diamino-4,7-diazadecane)]+ by counteranion and dioxygen. Inorganic Chemistry, 1991, 30, 3580-3582.	4.0	5
140	Synthesis and Characterization of Palladium(II)-Phosphole and -Biphosphole Complexes. Regulation of the Homoleptic Coordination Environment of Square-Planar Palladium(II). Bulletin of the Chemical Society of Japan, 1998, 71, 2885-2892.	3.2	5
141	Molecular assemblies based on strong axial coordination in metal complexes of saddle-distorted dodecaphenylporphyrins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 32-44.	0.8	5
142	Formation and Isolation of a Fourâ€Electronâ€Reduced Porphyrin Derivative by Reduction of a Stable 20Ï€ Isophlorin. Angewandte Chemie, 2018, 130, 1991-1995.	2.0	5
143	Mechanistic Insight into Synergistic Catalysis of Olefin Hydrogenation by a Hetero-Dinuclear Ru ^{II} –Co ^{II} Complex with Adjacent Reaction Sites. Inorganic Chemistry, 2019, 58, 11284-11288.	4.0	5
144	Discrete Ï€ Stack of a Tweezerâ€6haped Naphthalenediimide–Anthracene Conjugate. Chemistry - A European Journal, 2020, 26, 13288-13294.	3.3	5

#	Article	IF	CITATIONS
145	A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomaterials Science, 2021, 9, 6142-6152.	5.4	5
146	Significant Enhancement of Hole Transport Ability in Conjugated Polymer/Fullerene Bulk Heterojunction Microspheres. ACS Applied Polymer Materials, 2019, 1, 118-123.	4.4	4
147	A Mechanistic Dichotomy in Twoâ€Electron Reduction of Dioxygen Catalyzed by N , N 'â€Dimethylated Porphyrin Isomers. Chemistry - A European Journal, 2020, 26, 10480-10486.	3.3	4
148	Selective Convergence to Atropisomers of a Porphyrin Derivative Having Bulky Substituents at the Periphery. Journal of Organic Chemistry, 2020, 85, 12856-12869.	3.2	4
149	The first crystal structure determination of biphosphole–transition-metal complex: crystal structure of square-planer meso-[Pd(3,3′,4,4′-tetramethyl-1,1′-diphenyl-2 ,2′-biphosphole)2][BF4]2. Chemical Communications, 1997, , 1679-1680.	4.1	3
150	Molecular Recognition by a Cu(II)-2,2′-bipyridine Complex Involving Coordination and Hydrogen Bonding. Chemistry Letters, 2003, 32, 1172-1173.	1.3	3
151	{N-[Bis(2-pyridyl)methyl]-N,N-bis(2-pyridyl)methylamine-κ5N}chlorozinc(II) perchlorate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1291-m1292.	0.2	3
152	A Novel Ru(II)–DMSO Complex Having Non-coordinating 1-Naphthoylamide Arm: Effects of Intramolecular Hydrogen Bonding on Redox Potential of the Ruthenium Center. Chemistry Letters, 2005, 34, 258-259.	1.3	3
153	Synthesis, structure and physicochemical properties of a saddle-distorted porphyrin with a peripheral carboxyl group. Journal of Porphyrins and Phthalocyanines, 2011, 15, 421-432.	0.8	3
154	Iron complex of a quadruply fused porphyrin: Synthesis, structure and redox properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 252-258.	0.8	3
155	(Acetonitrile-κN)(2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrinato-κ4N)zinc(II) acetonitrile solvate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1097-m1099.	0.2	2
156	NH Tautomerism of a Quadruply Fused Porphyrin: Rigid Fused Structure Delays the Proton Transfer. Journal of Physical Chemistry B, 2018, 122, 316-327.	2.6	2
157	Novel Carbinolamine Complex Derived from Ketomalonate and trans-[CoCl2(3,7-Diaza-1,9-diaminononane)]+. Synthesis and Characterization of [Co(N-(3,7-Diaza-9-aminononyl)-α-amino-α-hydroxymalonato)] ClO4·H2O. Chemistry Letters, 1991, 20, 137-140.	1.3	1
158	Synthesis and characterization of novel Cu(II)–bipyridine complexes having functional groups and their application toward molecular recognition. Inorganica Chimica Acta, 2005, 358, 3592-3600.	2.4	1
159	Mechanistic study of methanol oxidation by RuIV–oxo complexes. Journal of Porphyrins and Phthalocyanines, 2015, 19, 417-426.	0.8	1
160	Redox properties of a bipyrimidine-bridged dinuclear ruthenium(II) complex. Inorganic Chemistry Communication, 2020, 120, 108150.	3.9	1
161	Synthesis and characterization of cobalt(III) complexes containing .alphadiamine and carbinolamine derived from .alphaaminomalonate and ethylenediamine [Erratum to document cited in CA112(10):90371e]. Inorganic Chemistry, 1990, 29, 4840-4840.	4.0	0
162	Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. [Erratum to document cited in CA120(13):163118e]. Journal of the American Chemical Society, 1994, 116, 4147-4147.	13.7	0

#	Article	IF	CITATIONS
163	Proton-coupled electron transfer in a Ru(II)-pterin complex. Journal of Inorganic Biochemistry, 2003, 96, 170.	3.5	0
164	Inside Cover: Construction of SnIVPorphyrin/Trinuclear Ruthenium Cluster Dyads Linked by Pyridine Carboxylates: Photoinduced Electron Transfer in the Marcus Inverted Region (Chem. Eur. J. 12/2010). Chemistry - A European Journal, 2010, 16, 3552-3552.	3.3	0
165	Tetranuclear Ruthenium(II) Complex with a Dinucleating Ligand Forming Multi-Mixed-Valence States. Inorganic Chemistry, 2014, 53, 12677-12679.	4.0	Ο
166	Innenrücktitelbild: Conformational Dynamics of Monomer―versus Dimerâ€like Features in a Naphthalenediimideâ€Based Conjugated Cyclophane (Angew. Chem. 13/2020). Angewandte Chemie, 2020, 132, 5445-5445.	2.0	0