N Salinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366314/publications.pdf Version: 2024-02-01

N SALINAS

#	Article	IF	CITATIONS
1	Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 2014, 513, 81-84.	27.8	528
2	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	18.8	397
3	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
4	Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 2010, 16, 3176-3192.	9.5	333
5	Upslope migration of Andean trees. Journal of Biogeography, 2011, 38, 783-791.	3.0	306
6	Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 2010, 16, 3171-3175.	9.5	240
7	Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.	3.3	221
8	Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology, 2018, 99, 2455-2466.	3.2	197
9	Microbial community composition explains soil respiration responses to changing carbon inputs along an <scp>A</scp> ndesâ€ŧoâ€ <scp>A</scp> mazon elevation gradient. Journal of Ecology, 2014, 102, 1058-1071.	4.0	181
10	Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters, 2014, 17, 324-332.	6.4	176
11	The sensitivity of tropical leaf litter decomposition to temperature: results from a largeâ€scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 2011, 189, 967-977.	7.3	166
12	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	9.5	146
13	The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography, 2013, 40, 950-962.	3.0	137
14	The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 2017, 214, 1019-1032.	7.3	126
15	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 2017, 20, 730-740.	6.4	100
16	Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochimica Et Cosmochimica Acta, 2016, 182, 155-172.	3.9	94
17	Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology and Diversity, 2014, 7, 161-171.	2.4	89
18	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	7.3	89

N Salinas

#	Article	IF	CITATIONS
19	Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils, 2018, 54, 219-228.	4.3	86
20	Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biology, 2019, 25, 827-838.	9.5	86
21	The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014, 7, 85-105.	2.4	82
22	Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil Biology and Biochemistry, 2019, 129, 212-222.	8.8	81
23	Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes. BioScience, 2015, 65, 906-921.	4.9	75
24	Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry, 2016, 127, 217-230.	3.5	75
25	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
26	Production of leaf wax n-alkanes across a tropical forest elevation transect. Organic Geochemistry, 2016, 100, 89-100.	1.8	68
27	Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters, 2019, 22, 1889-1899.	6.4	65
28	Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 107-123.	2.4	63
29	Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences, 2015, 12, 6071-6083.	3.3	62
30	Assessing traitâ€based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 2017, 26, 1357-1373.	5.8	57
31	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 2017, 214, 973-988.	7.3	57
32	Implications of fires on carbon budgets in Andean cloud montane forest: The importance of peat soils and tree resprouting. Forest Ecology and Management, 2011, 261, 1987-1997.	3.2	56
33	Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 2017, 214, 989-1001.	7.3	51
34	Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances, 2019, 5, eaaw8114.	10.3	51
35	Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 125-142.	2.4	47
36	Altitude effect on leaf wax carbon isotopic composition in humid tropical forests. Geochimica Et Cosmochimica Acta, 2017, 206, 1-17.	3.9	46

N SALINAS

#	Article	IF	CITATIONS
37	Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
38	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	4.1	42
39	Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey. Ecology and Evolution, 2019, 9, 14273-14285.	1.9	39
40	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
41	Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 2014, 7, 329-340.	2.4	35
42	Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18, 2882-2898.	9.5	34
43	Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Frontiers in Microbiology, 2014, 5, 720.	3.5	31
44	Predicting traitâ€environment relationships for venation networks along an Andesâ€Amazon elevation gradient. Ecology, 2017, 98, 1239-1255.	3.2	31
45	Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytologist, 2017, 214, 1064-1077.	7.3	30
46	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecology and Evolution, 2016, 6, 5674-5689.	1.9	26
47	Trade-Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Frontiers in Plant Science, 2020, 11, 106.	3.6	26
48	Tropical forest leaves may darken in response to climate change. Nature Ecology and Evolution, 2018, 2, 1918-1924.	7.8	23
49	Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. Frontiers in Plant Science, 2019, 10, 1810.	3.6	23
50	Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru. Journal of Tropical Ecology, 2014, 30, 503-519.	1.1	22
51	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
52	The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. Frontiers in Forests and Global Change, 2020, 3, .	2.3	19
53	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. Frontiers in Forests and Global Change, 2020, 3, .	2.3	19
54	Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon elevation gradient. Journal of Ecology, 2018, 106, 1683-1699.	4.0	18

N SALINAS

#	Article	IF	CITATIONS
55	Linking patterns and processes of tree community assembly across spatial scales in tropical montane forests. Ecology, 2020, 101, e03058.	3.2	18
56	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2952-2965.	3.0	17
57	Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Scientific Reports, 2020, 10, 2654.	3.3	17
58	Evolutionary heritage shapes tree distributions along an Amazonâ€ŧoâ€Andes elevation gradient. Biotropica, 2021, 53, 38-50.	1.6	15
59	Annual to decadal temperature adaptation of the soil bacterial community after translocation across an elevation gradient in the Andes. Soil Biology and Biochemistry, 2021, 158, 108217.	8.8	14
60	Reduced tree density and basal area in Andean forests are associated with bamboo dominance. Forest Ecology and Management, 2021, 480, 118648.	3.2	13
61	Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Global Ecology and Conservation, 2021, 28, e01696.	2.1	11
62	Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits. PLoS ONE, 2020, 15, e0228157.	2.5	8
63	Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils. Biogeosciences, 2021, 18, 3937-3959.	3.3	8
64	Methane Emissions from a Grassland-Wetland Complex in the Southern Peruvian Andes. Soil Systems, 2019, 3, 2.	2.6	6
65	Lista anotada de Ã _i rboles y afines en los bosques montanos del sureste peruano: la importancia de seguir recolectando. Revista Peruana De Biologia, 2015, 22, 145-174.	0.3	6
66	The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of preâ€adapted clades?. New Phytologist, 2021, 232, 2506-2519.	7.3	4
67	Improving landscapeâ€scale productivity estimates by integrating traitâ€based models and remotelyâ€sensed foliarâ€trait and canopyâ€structural data. Ecography, 2022, 2022, .	4.5	4
68	Gentianaceae endémicas del Perú. Revista Peruana De Biologia, 2006, 13, 339s-354s.	0.3	3
69	Alstroemeriaceae endémicas del Perú. Revista Peruana De Biologia, 2013, 13, .	0.3	1
70	Linking Patterns and Processes of Tree Community Assembly Across Spatial Scales in Tropical Montane Forests. Bulletin of the Ecological Society of America, 2020, 101, e01732.	0.2	0