Dimitris Menemenlis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oceanic sources, sinks, and transport of atmospheric CO ₂ . Global Biogeochemical Cycles, 2009, 23, .	1.9	455
2	Inverse estimates of anthropogenic CO2uptake, transport, and storage by the ocean. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	331
3	Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 2017, 358, .	6.0	307
4	On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 2010, 33, 129-144.	1.0	305
5	Ocean submesoscales as a key component of the global heat budget. Nature Communications, 2018, 9, 775.	5.8	255
6	Mesoscale to Submesoscale Wavenumber Spectra in Drake Passage. Journal of Physical Oceanography, 2016, 46, 601-620.	0.7	199
7	Using Green's Functions to Calibrate an Ocean General Circulation Model. Monthly Weather Review, 2005, 133, 1224-1240.	O.5	179
8	Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. Journal of Physical Oceanography, 2002, 32, 1404-1429.	0.7	171
9	Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochemical Cycles, 2007, 21, .	1.9	156
10	Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 2017, 44, 6191-6199.	1.5	153
11	Subaqueous melting of Store Glacier, west Greenland from threeâ€dimensional, highâ€resolution numerical modeling and ocean observations. Geophysical Research Letters, 2013, 40, 4648-4653.	1.5	146
12	Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Annals of Glaciology, 2012, 53, 229-234.	2.8	138
13	Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean. Journal of Physical Oceanography, 2018, 48, 591-605.	0.7	132
14	Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Annals of Glaciology, 2012, 53, 156-162.	2.8	130
15	Smallâ€scale open ocean currents have large effects on wind wave heights. Journal of Geophysical Research: Oceans, 2017, 122, 4500-4517.	1.0	128
16	Partitioning Ocean Motions Into Balanced Motions and Internal Gravity Waves: A Modeling Study in Anticipation of Future Space Missions. Journal of Geophysical Research: Oceans, 2018, 123, 8084-8105.	1.0	126
17	The Origin, Pathway, and Destination of Niño-3 Water Estimated by a Simulated Passive Tracer and Its Adjoint. Journal of Physical Oceanography, 2004, 34, 582-604.	0.7	123
18	Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. Journal of Geophysical Research, 2011, 116, .	3.3	120

#	Article	IF	CITATIONS
19	Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 2016, 43, 11,304.	1.5	120
20	NASA supercomputer improves prospects for ocean climate research. Eos, 2005, 86, 89.	0.1	109
21	Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO ₂ sampling on the inference of terrestrial biospheric sources and sinks. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 22486.	0.8	90
22	Oceanâ€ \mathbf{s} cale Interactions From Space. Earth and Space Science, 2019, 6, 795-817.	1.1	90
23	Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology, 2012, 53, 257-266.	2.8	89
24	Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept. Ocean Science, 2018, 14, 337-354.	1.3	87
25	Circumâ€Antarctic Shoreward Heat Transport Derived From an Eddy―and Tideâ€Resolving Simulation. Geophysical Research Letters, 2018, 45, 834-845.	1.5	86
26	Ocean forcing drives glacier retreat in Greenland. Science Advances, 2021, 7, .	4.7	86
27	Modeling of oceanâ€induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters, 2016, 43, 6374-6382.	1.5	85
28	Can large eddy simulation techniques improve mesoscale rich ocean models?. Geophysical Monograph Series, 2008, , 319-337.	0.1	84
29	Enhanced upward heat transport at deep submesoscale ocean fronts. Nature Geoscience, 2020, 13, 50-55.	5.4	84
30	Improved modeling of the Arctic halocline with a subgridâ€scale brine rejection parameterization. Journal of Geophysical Research, 2009, 114, .	3.3	79
31	Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 2017, 122, 7803-7821.	1.0	78
32	Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 915-922.	3.3	75
33	Understanding of Contemporary Regional Sea‣evel Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	9.0	74
34	Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 390-417.	0.8	71
35	A Near-Uniform Basin-Wide Sea Level Fluctuation of the Mediterranean Sea. Journal of Physical Oceanography, 2007, 37, 338-358.	0.7	69
36	Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nature Communications, 2018, 9, 3403.	5.8	69

DIMITRIS MENEMENLIS

#	Article	IF	CITATIONS
37	Multimegameter-range acoustic data obtained by bottom-mounted hydrophone arrays for measurement of ocean temperature. IEEE Journal of Oceanic Engineering, 1999, 24, 202-214.	2.1	65
38	Oceanâ€Induced Melt Triggers Glacier Retreat in Northwest Greenland. Geophysical Research Letters, 2018, 45, 8334-8342.	1.5	65
39	Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles, 2009, 23, .	1.9	60
40	An Observing System Simulation Experiment for the Calibration and Validation of the Surface Water Ocean Topography Sea Surface Height Measurement Using In Situ Platforms. Journal of Atmospheric and Oceanic Technology, 2018, 35, 281-297.	0.5	59
41	A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. , 0, , .		56
42	A decade of acoustic thermometry in the North Pacific Ocean. Journal of Geophysical Research, 2009, 114, .	3.3	52
43	SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves. Frontiers in Marine Science, 2019, 6, .	1.2	52
44	Ice shelf basal melt rates around <scp>A</scp> ntarctica from simulations and observations. Journal of Geophysical Research: Oceans, 2016, 121, 1085-1109.	1.0	51
45	Simulated Response of the Arctic Freshwater Budget to Extreme NAO Wind Forcing. Journal of Climate, 2009, 22, 2422-2437.	1.2	50
46	On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modelling, 2010, 33, 145-158.	1.0	50
47	On the Spatial Scales to be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer. Journal of Atmospheric and Oceanic Technology, 2019, 36, 87-99.	0.5	50
48	Global and Brazilian Carbon Response to El Niño Modoki 2011–2010. Earth and Space Science, 2017, 4, 637-660.	1.1	49
49	A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean Modelling, 2015, 88, 1-15.	1.0	46
50	Changes in the Arctic Ocean CO ₂ sink (1996–2007): A regional model analysis. Global Biogeochemical Cycles, 2013, 27, 1108-1118.	1.9	44
51	Reconstructing Upper-Ocean Vertical Velocity Field from Sea Surface Height in the Presence of Unbalanced Motion. Journal of Physical Oceanography, 2020, 50, 55-79.	0.7	44
52	The ECCOâ€Darwin Dataâ€Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean <i>p</i> CO ₂ and Airâ€6ea CO ₂ Flux. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001888.	1.3	43
53	Atlantic to Mediterranean Sea Level Difference Driven by Winds near Gibraltar Strait. Journal of Physical Oceanography, 2007, 37, 359-376.	0.7	42
54	Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Scientific Reports, 2019, 9, 16649.	1.6	42

#	Article	IF	CITATIONS
55	Assessing the magnitude of CO ₂ flux uncertainty in atmospheric CO ₂ records using products from NASA's Carbon Monitoring Flux Pilot Project. Journal of Geophysical Research D: Atmospheres, 2015, 120, 734-765.	1.2	41
56	Role of tides on the formation of the <scp>A</scp> ntarctic <scp>S</scp> lope <scp>F</scp> ront at the <scp>W</scp> eddellâ€ <scp>S</scp> cotia Confluence. Journal of Geophysical Research: Oceans, 2015, 120, 3658-3680.	1.0	41
57	Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). Earth System Science Data, 2021, 13, 299-330.	3.7	40
58	Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model. Journal of Physical Oceanography, 2012, 42, 802-823.	0.7	39
59	A review of recent results on ocean acoustic wave propagation in random media: basin scales. IEEE Journal of Oceanic Engineering, 1999, 24, 138-155.	2.1	38
60	Acceleration and Overturning of the Antarctic Slope Current by Winds, Eddies, and Tides. Journal of Physical Oceanography, 2019, 49, 2043-2074.	0.7	38
61	Sea-ice deformation in a coupled ocean–sea-ice model and inÂsatelliteÂremote sensing data. Cryosphere, 2017, 11, 1553-1573.	1.5	37
62	Scaling Properties of Arctic Sea Ice Deformation in a Highâ€Resolution Viscousâ€Plastic Sea Ice Model and in Satellite Observations. Journal of Geophysical Research: Oceans, 2018, 123, 672-687.	1.0	36
63	Clobal Estimates of the Energy Transfer From the Wind to the Ocean, With Emphasis on Nearâ€Inertial Oscillations. Journal of Geophysical Research: Oceans, 2019, 124, 5723-5746.	1.0	36
64	Characterizing the Transition From Balanced to Unbalanced Motions in the Southern California Current. Journal of Geophysical Research: Oceans, 2019, 124, 2088-2109.	1.0	35
65	Highâ€Frequency Submesoscale Motions Enhance the Upward Vertical Heat Transport in the Global Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016544.	1.0	35
66	Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves. PLoS ONE, 2016, 11, e0150950.	1.1	35
67	Numerical Investigations of Seasonal and Interannual Variability of North Pacific Subtropical Mode Water and Its Implications for Pacific Climate Variability. Journal of Climate, 2011, 24, 2648-2665.	1.2	34
68	Surface Kinetic Energy Distributions in the Global Oceans From a Highâ€Resolution Numerical Model and Surface Drifter Observations. Geophysical Research Letters, 2019, 46, 9757-9766.	1.5	34
69	Quantifying the processes controlling intraseasonal mixedâ€layer temperature variability in the tropical <scp>I</scp> ndian <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2015, 120, 692-715.	1.0	33
70	Observations and modeling of oceanâ€induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland. Geophysical Research Letters, 2017, 44, 8396-8403.	1.5	33
71	Linearization of an Oceanic General Circulation Model for Data Assimilation and Climate Studies. Journal of Atmospheric and Oceanic Technology, 1997, 14, 1420-1443.	0.5	31
72	Objective Determination of Feature Resolution in Two Sea Surface Temperature Analyses. Journal of Climate, 2013, 26, 2514-2533.	1.2	31

#	Article	IF	CITATIONS
73	Amundsen and <scp>B</scp> ellingshausen <scp>S</scp> eas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters. Journal of Geophysical Research: Oceans, 2017, 122, 6180-6195.	1.0	31
74	Characterizing meso- to submesoscale features in the South China Sea. Progress in Oceanography, 2020, 188, 102420.	1.5	31
75	A model of the Arctic Ocean carbon cycle. Journal of Geophysical Research, 2011, 116, .	3.3	29
76	Mapping Mediterranean Altimeter Data with a Multiresolution Optimal Interpolation Algorithm. Journal of Atmospheric and Oceanic Technology, 1998, 15, 535-546.	0.5	28
77	Modeling the Recent Changes in the Arctic Ocean CO ₂ Sink (2006–2013). Global Biogeochemical Cycles, 2019, 33, 420-438.	1.9	28
78	Longâ€Term Earthâ€Moon Evolution With Highâ€Level Orbit and Ocean Tide Models. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006875.	1.5	28
79	Investigating Solution Convergence in a Global Ocean Model Using a 2048-Processor Cluster of Distributed Shared Memory Machines. Scientific Programming, 2007, 15, 107-115.	0.5	27
80	Global coupled sea ice-ocean state estimation. Climate Dynamics, 2017, 49, 931-956.	1.7	26
81	Ice Flexure Forced by Internal Wave Packets in the Arctic Ocean. Science, 1991, 254, 832-835.	6.0	24
82	Impact of ECCO Ocean-State Estimates on the Initialization of Seasonal Climate Forecasts. Journal of Climate, 2008, 21, 1929-1947.	1.2	24
83	Putting It All Together: Adding Value to the Global Ocean and Climate Observing Systems With Complete Self-Consistent Ocean State and Parameter Estimates. Frontiers in Marine Science, 2019, 6, .	1.2	23
84	Basin-scale ocean circulation from combined altimetric, tomographic and model data. Nature, 1997, 385, 618-621.	13.7	22
85	Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. Ocean Modelling, 2015, 95, 1-14.	1.0	22
86	Modelling mangrove propagule dispersal trajectories using highâ€resolution estimates of ocean surface winds and currents. Biotropica, 2017, 49, 472-481.	0.8	21
87	Using Saildrones to Validate Arctic Sea-Surface Salinity from the SMAP Satellite and from Ocean Models. Remote Sensing, 2021, 13, 831.	1.8	20
88	Local Airâ€5ea Interactions at Ocean Mesoscale and Submesoscale in a Western Boundary Current. Geophysical Research Letters, 2022, 49, .	1.5	20
89	Error Estimates for an Ocean General Circulation Model from Altimeter and Acoustic Tomography Data. Monthly Weather Review, 2000, 128, 763-778.	0.5	19
90	Improved Internal Wave Spectral Continuum in a Regional Ocean Model. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015974.	1.0	19

DIMITRIS MENEMENLIS

#	Article	IF	CITATIONS
91	On the timeâ€mean state of ocean models and the properties of long range acoustic propagation. Journal of Geophysical Research: Oceans, 2013, 118, 4346-4362.	1.0	18
92	Inferring Connectivity Range in Submerged Aquatic Populations (Ruppia L.) Along European Coastal Lagoons From Genetic Imprint and Simulated Dispersal Trajectories. Frontiers in Plant Science, 2018, 9, 806.	1.7	18
93	Decomposition of the Multimodal Multidirectional M2 Internal Tide Field. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1157-1173.	0.5	16
94	Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015306.	1.0	16
95	Attribution of Spaceâ€Time Variability in Globalâ€Ocean Dissolved Inorganic Carbon. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
96	Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico. Journal of Physical Oceanography, 2021, 51, 475-489.	0.7	13
97	Acoustical Measurement of Current and Vorticity beneath Ice. Journal of Atmospheric and Oceanic Technology, 1992, 9, 827-849.	0.5	11
98	Local and Remote Forcing of Interannual Sea‣evel Variability at Nantucket Island. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	11
99	Threeâ€ŧo‣ixâ€Day Air–Sea Oscillation in Models and Observations. Geophysical Research Letters, 2020, 47, e2019GL085837.	1.5	10
100	Mapping and pseudoinverse algorithms for ocean data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 43-51.	2.7	9
101	Impact of Data Assimilation on ECCO2 Equatorial Undercurrent and North Equatorial Countercurrent in the Pacific Ocean. Journal of Atmospheric and Oceanic Technology, 2015, 32, 131-143.	0.5	9
102	Altimetry-Based Diagnosis of Deep-Reaching Sub-Mesoscale Ocean Fronts. Fluids, 2020, 5, 145.	0.8	9
103	Numerical Investigation of Mechanisms Underlying Oceanic Internal Gravity Wave Power-Law Spectra. Journal of Physical Oceanography, 2020, 50, 2713-2733.	0.7	9
104	S-MODE: The Sub-Mesoscale Ocean Dynamics Experiment. , 2020, , .		9
105	Antipodal acoustic thermometry: 1960, 2004. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 1-20.	0.6	8
106	Diagnosing Oceanâ€Waveâ€Turbulence Interactions From Space. Geophysical Research Letters, 2019, 46, 8933-8942.	1.5	8
107	Pacific Abyssal Transport and Mixing: Through the Samoan Passage versus around the Manihiki Plateau. Journal of Physical Oceanography, 2019, 49, 1577-1592.	0.7	8
108	Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions. Geoscientific Model Development, 2021, 14, 1801-1819.	1.3	8

DIMITRIS MENEMENLIS

#	Article	IF	CITATIONS
109	Response to Comment on "Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño― Science, 2018, 362, .	6.0	6
110	Role of Mixed‣ayer Instabilities in the Seasonal Evolution of Eddy Kinetic Energy Spectra in a Global Submesoscale Permitting Simulation. Geophysical Research Letters, 2021, 48, e2021GL094777.	1.5	6
111	Separating Energetic Internal Gravity Waves and Smallâ€Scale Frontal Dynamics. Geophysical Research Letters, 2022, 49, .	1.5	6
112	Consequences of different air-sea feedbacks on ocean using MITgcm and MERRA-2 forcing: Implications for coupled data assimilation systems. Ocean Modelling, 2018, 132, 91-111.	1.0	5
113	Geostrophy Assessment and Momentum Balance of the Global Oceans in a Tide―and Eddyâ€Resolving Model. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017422.	1.0	5
114	Influence of Nonseasonal River Discharge on Sea Surface Salinity and Height. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	4
115	Development of adjoint-based ocean state estimation for the Amundsen and Bellingshausen seas and ice shelf cavities using MITgcm–ECCO (66j). Geoscientific Model Development, 2021, 14, 4909-4924.	1.3	3
116	RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave. Geoscientific Model Development, 2022, 15, 2105-2131.	1.3	3
117	Earth system model parameter adjustment using a Green's functions approach. Geoscientific Model Development, 2022, 15, 2309-2324.	1.3	2
118	Regional ocean forecasting systems and their applications: Design considerations of such a system for the South China Sea. Aquatic Ecosystem Health and Management, 2015, 18, 443-453.	0.3	1