Carol J Wilusz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2365268/publications.pdf

Version: 2024-02-01

56 papers

4,747 citations

147801 31 h-index 56 g-index

58 all docs 58 docs citations

58 times ranked 5869 citing authors

#	Article	IF	CITATIONS
1	The highways and byways of mRNA decay. Nature Reviews Molecular Cell Biology, 2007, 8, 113-126.	37.0	1,129
2	The cap-to-tail guide to mRNA turnover. Nature Reviews Molecular Cell Biology, 2001, 2, 237-246.	37.0	705
3	Bringing the role of mRNA decay in the control of gene expression into focus. Trends in Genetics, 2004, 20, 491-497.	6.7	243
4	A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. Rna, 2012, 18, 2029-2040.	3.5	177
5	CUG-BP binds to RNA substrates and recruits PARN deadenylase. Rna, 2006, 12, 1084-1091.	3.5	159
6	Eukaryotic Lsm proteins: lessons from bacteria. Nature Structural and Molecular Biology, 2005, 12, 1031-1036.	8.2	141
7	Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology, 2015, 485, 322-329.	2.4	129
8	Systematic Analysis of Cis-Elements in Unstable mRNAs Demonstrates that CUGBP1 Is a Key Regulator of mRNA Decay in Muscle Cells. PLoS ONE, 2010, 5, e11201.	2.5	122
9	H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5023-8.	7.1	104
10	Non-stop decay?a new mRNA surveillance pathway. BioEssays, 2002, 24, 785-788.	2.5	95
11	Curbing the nonsense: the activation and regulation of mRNA surveillance: Figure 1 Genes and Development, 2001, 15, 2781-2785.	5.9	95
12	Lsm proteins and Hfq. RNA Biology, 2013, 10, 592-601.	3.1	94
13	Sindbis Virus Usurps the Cellular HuR Protein to Stabilize Its Transcripts and Promote Productive Infections in Mammalian and Mosquito Cells. Cell Host and Microbe, 2010, 8, 196-207.	11.0	93
14	Efficient In Vitro Amplification of Chronic Wasting Disease PrP RES. Journal of Virology, 2007, 81, 9605-9608.	3.4	87
15	The RNA-binding Protein CUGBP1 Regulates Stability of Tumor Necrosis Factor mRNA in Muscle Cells. Journal of Biological Chemistry, 2008, 283, 22457-22463.	3.4	85
16	Global Analysis of Pub1p Targets Reveals a Coordinate Control of Gene Expression through Modulation of Binding and Stability. Molecular and Cellular Biology, 2005, 25, 5499-5513.	2.3	73
17	The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells. Journal of Virology, 2008, 82, 880-892.	3.4	67
18	XRN1 Stalling in the $5\hat{a} \in \mathbb{M}$ UTR of Hepatitis C Virus and Bovine Viral Diarrhea Virus Is Associated with Dysregulated Host mRNA Stability. PLoS Pathogens, 2015, 11, e1004708.	4.7	67

#	Article	IF	CITATIONS
19	Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus. Cell Reports, 2013, 5, 909-917.	6.4	65
20	Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods, 2017, 120, 39-48.	3.8	58
21	Destabilization of nucleophosmin mRNA by the HuR/KSRP complex is required for muscle fibre formation. Nature Communications, 2014, 5, 4190.	12.8	56
22	Dephosphorylation of HuR Protein during Alphavirus Infection Is Associated with HuR Relocalization to the Cytoplasm*. Journal of Biological Chemistry, 2012, 287, 36229-36238.	3.4	50
23	Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts. Nature Structural and Molecular Biology, 2007, 14, 824-831.	8.2	47
24	The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts. PLoS Genetics, 2012, 8, e1002901.	3.5	47
25	Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biology, 2013, 10, 277-286.	3.1	47
26	RNA recognition by 3′-to-5′ exonucleases: The substrate perspective. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 256-265.	1.9	43
27	CELFish ways to modulate mRNA decay. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 695-707.	1.9	43
28	New ways to meet your $(3\hat{a} \in 2)$ end $\hat{a} \in 3$ oligouridylation as a step on the path to destruction. Genes and Development, 2008, 22, 1-7.	5.9	41
29	Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells. Genome Research, 2012, 22, 1457-1467.	5 . 5	41
30	A complex containing CstF-64 and the SL2 snRNP connects mRNA 3' end formation and trans-splicing in C. elegans operons. Genes and Development, 2001, 15, 2562-2571.	5.9	39
31	Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nature Communications, 2021, 12, 2899.	12.8	38
32	Small changes, big implications: The impact of m6A RNA methylation on gene expression in pluripotency and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194402.	1.9	37
33	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environmental Science: Water Research and Technology, 2021, 7, 1545-1551.	2.4	34
34	A Yeast Homologue of Hsp70, Ssa1p, Regulates Turnover of the MFA2 Transcript through Its AU-Rich 3′ Untranslated Region. Molecular and Cellular Biology, 2003, 23, 2623-2632.	2.3	32
35	Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nature Structural and Molecular Biology, 2006, 13, 429-435.	8.2	32
36	Sequence-specific RNA binding mediated by the RNase PH domain of components of the exosome. Rna, 2006, 12, 1810-1816.	3.5	30

#	Article	IF	Citations
37	Nucleophosmin deposition during mRNA $3\hat{a}\in^2$ end processing influences poly(A) tail length. EMBO Journal, 2011, 30, 3994-4005.	7.8	30
38	YTHDF2 destabilizes m ⁶ A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. Rna, 2020, 26, 739-755.	3.5	30
39	Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1. Journal of Biological Chemistry, 2018, 293, 285-295.	3.4	28
40	Messenger RNA Decay in Mammalian Cells: The Exonuclease Perspective. Cell Biochemistry and Biophysics, 2004, 41, 265-278.	1.8	25
41	Functional redundancy of worm spliceosomal proteins U1A and U2B". Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9753-9757.	7.1	25
42	Host Directed Therapy for Chronic Tuberculosis via Intrapulmonary Delivery of Aerosolized Peptide Inhibitors Targeting the IL-10-STAT3 Pathway. Scientific Reports, 2018, 8, 16610.	3.3	25
43	A cell-free mRNA stability assay reveals conservation of the enzymes and mechanisms of mRNA decay between mosquito and mammalian cell lines. Insect Biochemistry and Molecular Biology, 2005, 35, 1321-1334.	2.7	24
44	The $3\hat{a} \in \mathbb{R}^2$ Untranslated Region of the Rabies Virus Glycoprotein mRNA Specifically Interacts with Cellular PCBP2 Protein and Promotes Transcript Stability. PLoS ONE, 2012, 7, e33561.	2.5	21
45	HuR and Translation—The Missing Linc(RNA). Molecular Cell, 2012, 47, 495-496.	9.7	18
46	HuR-SIRT: The Hairy World of Posttranscriptional Control. Molecular Cell, 2007, 25, 485-487.	9.7	15
47	Chapter 8 The Preparation and Applications of Cytoplasmic Extracts from Mammalian Cells for Studying Aspects of mRNA Decay. Methods in Enzymology, 2008, 448, 139-163.	1.0	15
48	Viruses: Overturning RNA Turnover. RNA Biology, 2006, 3, 140-144.	3.1	11
49	The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts. PLoS ONE, 2017, 12, e0170680.	2.5	9
50	Consequences of mRNA Wardrobe Malfunctions. Cell, 2010, 143, 863-865.	28.9	7
51	Repeat expansion diseases: when a good RNA turns bad. Wiley Interdisciplinary Reviews RNA, 2010, 1, 173-192.	6.4	6
52	Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Scientific Reports, 2018, 8, 16995.	3.3	4
53	In Vivo Analysis of the Decay of Transcripts Generated by Cytoplasmic RNA Viruses. Methods in Enzymology, 2008, 449, 97-123.	1.0	3
54	Engineered viral RNA decay intermediates to assess XRN1-mediated decay. Methods, 2019, 155, 116-123.	3.8	3

#	Article	lF	CITATIONS
55	trans Regulation: Do mRNAs Have a Herd Mentality?. Developmental Cell, 2010, 18, 333-334.	7.0	1
56	CUG-BP and 3'UTR sequences influence PARN-mediated deadenylation in mammalian cell extracts. Genetics and Molecular Biology, 2007, 30, 646-655.	1.3	1