Yan Chun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2364647/publications.pdf

Version: 2024-02-01

83 papers 8,532 citations

71102 41 h-index 82 g-index

84 all docs 84 docs citations

times ranked

84

8060 citing authors

#	Article	IF	CITATIONS
1	1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. Journal of Clinical Investigation, 2002, $110,229$ - 238 .	8.2	1,398
2	1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. Journal of Clinical Investigation, 2002, 110, 229-238.	8.2	950
3	Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice ¹ . Endocrinology, 1998, 139, 4391-4396.	2.8	474
4	Vitamin D: a negative endocrine regulator of the renin–angiotensin system and blood pressure. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 387-392.	2.5	468
5	1,25-Dihydroxyvitamin D3 Suppresses Renin Gene Transcription by Blocking the Activity of the Cyclic AMP Response Element in the Renin Gene Promoter. Journal of Biological Chemistry, 2007, 282, 29821-29830.	3.4	421
6	Vitamin D Receptor Inhibits Nuclear Factor κB Activation by Interacting with IκB Kinase β Protein. Journal of Biological Chemistry, 2013, 288, 19450-19458.	3.4	285
7	Vitamin D regulation of the renin–angiotensin system. Journal of Cellular Biochemistry, 2003, 88, 327-331.	2.6	282
8	Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. Journal of Clinical Investigation, 2013, 123, 3983-3996.	8.2	270
9	Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: Blockade of compensatory renin increase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15896-15901.	7.1	263
10	1,25-Dihydroxyvitamin D Promotes Negative Feedback Regulation of TLR Signaling via Targeting MicroRNA-155–SOCS1 in Macrophages. Journal of Immunology, 2013, 190, 3687-3695.	0.8	200
11	Mechanisms of Disease: vitamin D and inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 2005, 2, 308-315.	1.7	162
12	Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E558-E564.	3.5	134
13	VDR Attenuates Acute Lung Injury by Blocking Ang-2-Tie-2 Pathway and Renin-Angiotensin System. Molecular Endocrinology, 2013, 27, 2116-2125.	3.7	127
14	Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice. Endocrinology, 1998, 139, 4391-4396.	2.8	127
15	1,25-Dihydroxyvitamin D Protects Intestinal Epithelial Barrier by Regulating the Myosin Light Chain Kinase Signaling Pathway. Inflammatory Bowel Diseases, 2015, 21, 2495-2506.	1.9	124
16	Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney International, 2010, 77, 1000-1009.	5.2	116
17	EGFR Signals Downregulate Tumor Suppressors miR-143 and miR-145 in Western Diet–Promoted Murine Colon Cancer: Role of G1 Regulators. Molecular Cancer Research, 2011, 9, 960-975.	3.4	114
18	High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death and Disease, 2020, 11, 914.	6.3	114

#	Article	IF	CITATIONS
19	Renoprotective effects of vitamin D analogs. Kidney International, 2010, 78, 134-139.	5.2	109
20	Targeted vitamin D receptor expression in juxtaglomerular cells suppresses renin expression independent of parathyroid hormone and calcium. Kidney International, 2008, 74, 1577-1581.	5.2	108
21	Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 179-183.	2.5	105
22	Vitamin D Receptor Signaling in Podocytes Protects against Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 1977-1986.	6.1	96
23	Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis. Endocrinology, 2018, 159, 967-979.	2.8	86
24	Analysis of Vitamin D-Dependent Calcium-Binding Protein Messenger Ribonucleic Acid Expression in Mice Lacking the Vitamin D Receptor ¹ . Endocrinology, 1998, 139, 847-851.	2.8	84
25	Effect of ANG II type I receptor antagonist and ACE inhibitor on vitamin D receptor-null mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R255-R261.	1.8	78
26	Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis,. American Journal of Clinical Nutrition, 2016, 104, 113-120.	4.7	78
27	Analogs of 1α,25-dihydroxyvitamin D3 as novel inhibitors of renin biosynthesis. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 59-66.	2.5	77
28	Involvement of the vitamin D receptor in the regulation of NF-l ^o B activity in fibroblasts. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 563-566.	2.5	73
29	Vitamin D receptor is not required for the rapid actions of 1,25-dihydroxyvitamin D3 to increase intracellular calcium and activate protein kinase C in mouse osteoblasts. Journal of Cellular Biochemistry, 2003, 88, 794-801.	2.6	71
30	High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology - Renal Physiology, 2019, 317, G453-G462.	3.4	71
31	Nutritional Vitamin D Supplementation in Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 611-619.	4.5	69
32	A Vitamin D Analogue Inhibits Colonic Carcinogenesis in the AOM/DSS Model. Journal of Surgical Research, 2007, 142, 239-245.	1.6	68
33	Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 132-145.	6.1	65
34	Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Current Medicinal Chemistry, 2018, 25, 3256-3271.	2.4	64
35	Inactivation of the vitamin D receptor in APC ^{min/+} mice reveals a critical role for the vitamin D receptor in intestinal tumor growth. International Journal of Cancer, 2012, 130, 10-19.	5.1	63
36	The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. British Journal of Haematology, 1999, 105, 478-485.	2.5	55

#	Article	IF	CITATIONS
37	Cloning and Characterization of the Vitamin D Receptor from Xenopus laevis*. Endocrinology, 1997, 138, 2347-2353.	2.8	54
38	N6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Developmental Cell, 2020, 55, 737-753.e7.	7.0	51
39	Chronic Activation of the Renin-Angiotensin System Induces Lung Fibrosis. Scientific Reports, 2015, 5, 15561.	3.3	49
40	Altered gene expression profile in the kidney of vitamin D receptor knockout mice. Journal of Cellular Biochemistry, 2003, 89, 709-719.	2.6	48
41	Activation of the Renin-Angiotensin System Promotes Colitis Development. Scientific Reports, 2016, 6, 27552.	3.3	46
42	Molecular Mechanism of Vitamin D in the Cardiovascular System. Journal of Investigative Medicine, 2011, 59, 868-871.	1.6	44
43	Podocytes as Target of Vitamin D. Current Diabetes Reviews, 2011, 7, 35-40.	1.3	44
44	Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. American Journal of Physiology - Renal Physiology, 2019, 316, F1068-F1077.	2.7	43
45	MicroRNA-mediated mechanism of vitamin D regulation of innate immune response. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 81-86.	2.5	41
46	The Renin–Angiotensin System Mediates EGF Receptor–Vitamin D Receptor Cross-Talk in Colitis-Associated Colon Cancer. Clinical Cancer Research, 2014, 20, 5848-5859.	7.0	40
47	ADAM17 is a Tumor Promoter and Therapeutic Target in Western Diet–associated Colon Cancer. Clinical Cancer Research, 2017, 23, 549-561.	7.0	40
48	Critical role of the cAMPâ€PKA pathway in hyperglycemiaâ€induced epigenetic activation of fibrogenic program in the kidney. FASEB Journal, 2017, 31, 2065-2075.	0.5	39
49	Vitamin D/Vitamin D Receptor Signaling Is Required for Normal Development and Function of Group 3 Innate Lymphoid Cells in the Gut. IScience, 2019, 17, 119-131.	4.1	38
50	Renin-angiotensin system promotes colonic inflammation by inducing T _H 17 activation via JAK2/STAT pathway. American Journal of Physiology - Renal Physiology, 2019, 316, G774-G784.	3.4	36
51	ATP-citrate lyase is essential for high glucose-induced histone hyperacetylation and fibrogenic gene upregulation in mesangial cells. American Journal of Physiology - Renal Physiology, 2017, 313, F423-F429.	2.7	35
52	Vitamin D Receptor Down-Regulation Is Associated With Severity of Albuminuria in Type 2 Diabetes Patients. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4395-4404.	3.6	31
53	Transgenic Expression of Vitamin D Receptor in Gut Epithelial Cells Ameliorates Spontaneous Colitis Caused by Interleukin-10 Deficiency. Digestive Diseases and Sciences, 2015, 60, 1941-1947.	2.3	30
54	Microbiota-Dependent Induction of Colonic Cyp27b1 Is Associated With Colonic Inflammation: Implications of Locally Produced 1,25-Dihydroxyvitamin D3 in Inflammatory Regulation in the Colon. Endocrinology, 2017, 158, 4064-4075.	2.8	25

#	Article	IF	CITATIONS
55	Urinary NGAL and RBP Are Biomarkers of Normoalbuminuric Renal Insufficiency in Type 2 Diabetes Mellitus. Journal of Immunology Research, 2019, 2019, 1-11.	2.2	24
56	Cloning and Characterization of the Vitamin D Receptor from Xenopus laevis. Endocrinology, 1997, 138, 2347-2353.	2.8	24
57	Vitamin D/VDR signaling suppresses microRNAâ€802â€induced apoptosis of keratinocytes in oral lichen planus. FASEB Journal, 2019, 33, 1042-1050.	0.5	23
58	Impact of Angiotensin II Signaling Blockade on Clinical Outcomes in Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2019, 64, 1938-1944.	2.3	23
59	Vitamin D Receptor Signaling in Renal and Cardiovascular Protection. Seminars in Nephrology, 2013, 33, 433-447.	1.6	22
60	Vitamin D and diabetic nephropathy. Current Diabetes Reports, 2008, 8, 464-469.	4.2	20
61	ATPâ€citrate lyase is an epigenetic regulator to promote obesityâ€related kidney injury. FASEB Journal, 2019, 33, 9602-9615.	0.5	20
62	Vitamin D suppresses bleomycin-induced pulmonary fibrosis by targeting the local renin–angiotensin system in the lung. Scientific Reports, 2021, 11, 16525.	3.3	19
63	Vitamin D in Chronic Kidney Disease. Contributions To Nephrology, 2013, 180, 98-109.	1.1	17
64	Discovery of Vitamin D Hormone as a Negative Regulator of the Renin–Angiotensin System. Clinical Chemistry, 2014, 60, 561-562.	3.2	16
65	Inhibition of renin: an updated review of the development of renin inhibitors. Current Opinion in Investigational Drugs, 2007, 8, 750-7.	2.3	16
66	IBD-associated Colon Cancers Differ in DNA Methylation and Gene Expression Profiles Compared With Sporadic Colon Cancers. Journal of Crohn's and Colitis, 2019, 13, 884-893.	1.3	15
67	Vitamin D receptor is required for dietary calcium-induced repression of calbindin-D9k expression in mice. Journal of Nutritional Biochemistry, 2005, 16, 286-290.	4.2	14
68	A protocol for macrophage depletion and reconstitution in a mouse model of sepsis. STAR Protocols, 2021, 2, 101004.	1.2	14
69	Vitamin D receptor expression in peripheral blood mononuclear cells is inversely associated with disease activity and inflammation in lupus patients. Clinical Rheumatology, 2019, 38, 2509-2518.	2.2	12
70	Vitamin D Deficiency Exacerbates Colonic Inflammation Due to Activation of the Local Renin–Angiotensin System in the Colon. Digestive Diseases and Sciences, 2021, 66, 3813-3821.	2.3	12
71	The Iron-Klotho-VDR Axis Is a Major Determinant of Proximal Convoluted Tubule Injury in Haptoglobin 2-2 Genotype Diabetic Nephropathy Patients and Mice. Journal of Diabetes Research, 2018, 2018, 1-12.	2.3	10
72	Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated colon cancer. Epigenetics, 2021, 16, 1317-1334.	2.7	10

#	Article	IF	CITATIONS
73	Upregulation of interleukin-18 expression in mouse primary keratinocytes induced to differentiate by calcium. Archives of Dermatological Research, 2002, 294, 370-376.	1.9	8
74	AMP-18 Targets p21 to Maintain Epithelial Homeostasis. PLoS ONE, 2015, 10, e0125490.	2.5	7
75	MicroRNAâ€122 contributes to lipopolysaccharideâ€induced acute kidney injury via downâ€regulating the vitamin D receptor in the kidney. European Journal of Clinical Investigation, 2021, 51, e13547.	3.4	6
76	Losartan and Vitamin D Inhibit Colonic Tumor Development in a Conditional Apc-Deleted Mouse Model of Sporadic Colon Cancer. Cancer Prevention Research, 2019, 12, 433-448.	1.5	4
77	Blockade of Androgen Markers Using a Novel Betasitosterol, Thioctic Acid and Carnitine-containing Compound in Prostate and Hair Follicle Cell-based Assays. Phytotherapy Research, 2016, 30, 1016-1020.	5.8	3
78	Association Between Higher Predicted Serum Vitamin D Levels and Reduced Incidence of Inflammatory Bowel Diseases. Gastroenterology, 2012, 143, e28.	1.3	1
79	Vitamin D and Calcium for Colorectal Adenoma Chemoprevention. Nutrition and Cancer, 2017, 69, 167-167.	2.0	1
80	Vitamin D receptor is negatively correlated with interferon- \hat{l}^3 -inducible protein-10 in systemic lupus erythematosus with renal involvement. European Journal of Inflammation, 2020, 18, 205873922094233.	0.5	1
81	Targeting Intestinal Vitamin D Receptor Signaling to Mitigate Graft-Versus-Host Disease. Blood, 2018, 132, 4515-4515.	1.4	1
82	Bacterial Regulation of Vitamin D Receptor in Intestinal Epithelial Inflammation. FASEB Journal, 2008, 22, 320.10.	0.5	0
83	1,25â€Dihydroxyvitamin D Enhances Alveolar Fluid Clearance by Upâ€Regulating the Expression of Epithelial Sodium Channels. FASEB Journal, 2012, 26, 696.3.	0.5	0