Jose Ramon Leiza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2364179/publications.pdf

Version: 2024-02-01

81900 123424 5,383 187 39 61 citations g-index h-index papers 195 195 195 2595 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 5,. Macromolecular Chemistry and Physics, 2004, 205, 2151-2160.	2.2	360
2	A Decrease in Effective Acrylate Propagation Rate Constants Caused by Intramolecular Chain Transfer. Macromolecules, 2000, 33, 4-7.	4.8	180
3	Seeded Semibatch Emulsion Polymerization ofn-Butyl Acrylate. Kinetics and Structural Properties. Macromolecules, 2000, 33, 5041-5047.	4.8	160
4	Evidence of Branching in Poly(butyl acrylate) Produced in Pulsed-Laser Polymerization Experiments. Macromolecular Rapid Communications, 2003, 24, 173-177.	3.9	128
5	Modeling of Seeded Semibatch Emulsion Polymerization of n-BA. Industrial & Engineering Chemistry Research, 2001, 40, 3883-3894.	3.7	115
6	Effect of the Intramolecular Chain Transfer to Polymer on PLP/SEC Experiments of Alkyl Acrylates. Macromolecular Theory and Simulations, 2003, 12, 315-324.	1.4	107
7	Kinetics and Polymer Microstructure of the Seeded Semibatch Emulsion Copolymerization ofn-Butyl Acrylate and Styrene. Macromolecules, 2001, 34, 5147-5157.	4.8	102
8	On-line control of a semibatch emulsion polymerization reactor based on calorimetry. AICHE Journal, 1997, 43, 1069-1081.	3.6	92
9	The role of methyl methacrylate on branching and gel formation in the emulsion copolymerization of BA/MMA. Polymer, 2007, 48, 2542-2547.	3.8	91
10	Intramolecular Chain Transfer to Polymer in the Emulsion Polymerization of 2-Ethylhexyl Acrylate. Macromolecules, 2001, 34, 6138-6143.	4.8	86
11	Molecular-weight distribution control in emulsion polymerization. AICHE Journal, 1998, 44, 1667-1679.	3.6	80
12	Seeded semibatch emulsion polymerization of butyl acrylate: Effect of the chain-transfer agent on the kinetics and structural properties. Journal of Polymer Science Part A, 2001, 39, 1106-1119.	2.3	80
13	Control of Molecular Weight Distribution in Emulsion Polymerization Using On-Line Reaction Calorimetry. Industrial & Engineering Chemistry Research, 2001, 40, 218-227.	3.7	74
14	Redox initiator systems for emulsion polymerization of acrylates. Journal of Polymer Science Part A, 2009, 47, 2917-2927.	2.3	72
15	Macroinitiator and Macromonomer Modified Montmorillonite for the Synthesis of Acrylic/MMT Nanocomposite Latexes. Macromolecules, 2009, 42, 3316-3325.	4.8	72
16	UV screening clear coats based on encapsulated CeO2 hybrid latexes. Journal of Materials Chemistry A, 2013, 1, 3155.	10.3	70
17	On-line terpolymer composition control in semicontinuous emulsion polymerization. AICHE Journal, 1994, 40, 1850-1864.	3.6	67

Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl) Tj ETQq $0\,0\,0$ rgBT /Overlock $10\,\mathrm{Tf}_{67}\,50\,62\,\mathrm{To}_{3.8}$

#	Article	IF	CITATIONS
19	Independent control of sol molar mass and gel content in acrylate polymer/latexes. Polymer, 2005, 46, 9555-9561.	3.8	64
20	Particle Size Distribution Measurements of PolymericDispersions: A Comparative Study. Particle and Particle Systems Characterization, 2000, 17, 236-243.	2.3	61
21	Molecular Weight Distribution (Soluble and Insoluble Fraction) in Emulsion Polymerization of Acrylate Monomers by Monte Carlo Simulations. Industrial & Engineering Chemistry Research, 2008, 47, 5934-5947.	3.7	59
22	Nonlinear Control for Maximum Production Rate of Latexes of Well-Defined Polymer Composition. Industrial & Engineering Chemistry Research, 1997, 36, 4243-4254.	3.7	58
23	Seeded Semibatch Emulsion Copolymerization ofn-Butyl Acrylate and Methyl Methacrylate. Industrial & Samp; Engineering Chemistry Research, 2004, 43, 7401-7409.	3.7	57
24	New Class of Alkoxyamines for Efficient Controlled Homopolymerization of Methacrylates. ACS Macro Letters, 2016, 5, 1019-1022.	4.8	57
25	Exploring the Limits of Branching and Gel Content in the Emulsion Polymerization ofn-BA. Macromolecules, 2006, 39, 5015-5020.	4.8	54
26	High Solids Content Waterborne Acrylic/Montmorillonite Nanocomposites by Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2008, 2, 80-89.	1.5	54
27	Simultaneous control of copolymer composition and MWD in emulsion copolymerization. AICHE Journal, 2001, 47, 1594-1606.	3.6	53
28	Seeded Semicontinuous Emulsion Copolymerization of Butyl Acrylate with Cross-Linkersâ€. Macromolecules, 2005, 38, 1164-1171.	4.8	52
29	Monitoring Emulsion Polymerization Reactors:  Calorimetry Versus Raman Spectroscopy. Industrial & Lamp; Engineering Chemistry Research, 2005, 44, 7200-7207.	3.7	51
30	Photoactive self-cleaning polymer coatings by TiO2 nanoparticle Pickering miniemulsion polymerization. Chemical Engineering Journal, 2015, 281, 209-217.	12.7	50
31	Analyzing the discrepancies in the activation energies of the backbiting and \hat{l}^2 -scission reactions in the radical polymerization of n-butyl acrylate. Polymer Chemistry, 2016, 7, 2069-2077.	3.9	48
32	Copolymer Composition Control in Unseeded Emulsion Polymerization Using Calorimetric Data. Industrial & Engineering Chemistry Research, 1995, 34, 3899-3906.	3.7	46
33	Adhesion enhancement in waterborne acrylic latex binders synthesized with phosphate methacrylate monomers. Progress in Organic Coatings, 2008, 61, 38-44.	3.9	46
34	A Neural Network Model for Estimating the Particle Size Distribution of Dilute Latex from Multiangle Dynamic Light Scattering Measurements. Particle and Particle Systems Characterization, 2009, 26, 41-52.	2.3	46
35	A New Insight into the Formation of Polymer Networks: A Kinetic Monte Carlo Simulation of the Cross-Linking Polymerization of S/DVB. Macromolecules, 2013, 46, 9064-9073.	4.8	44
36	High Biobased Content Latexes for Development of Sustainable Pressure Sensitive Adhesives. Industrial & Engineering Chemistry Research, 2018, 57, 14509-14516.	3.7	44

#	Article	IF	CITATIONS
37	Preparation of high solids content poly(n-butyl acrylate) latexes through miniemulsion polymerization. Journal of Applied Polymer Science, 1997, 64, 1797-1809.	2.6	43
38	Highâ€Solids Content Waterborne Polymerâ€Clay Nanocomposites. Macromolecular Symposia, 2007, 259, 305-317.	0.7	40
39	Modeling the equilibrium morphology of nanodroplets in the presence of nanofillers. Journal of Colloid and Interface Science, 2010, 352, 359-365.	9.4	39
40	Acid catalyzed polymerization of macrolactones in bulk and aqueous miniemulsion: Ring opening vs. condensation. European Polymer Journal, 2013, 49, 1601-1609.	5.4	38
41	On-Line Copolymer Composition Control in the Semicontinuous Emulsion Copolymerization of Ethyl Acrylate and Methyl Methacrylate. Polymer-Plastics Technology and Engineering, 1993, 1, 461-498.	0.7	37
42	Detailed Microstructure Investigation of Acrylate/Methacrylate Functional Copolymers by Kinetic Monte Carlo Simulation. Macromolecular Reaction Engineering, 2012, 6, 319-329.	1.5	35
43	Water Whitening Reduction in Waterborne Pressureâ€Sensitive Adhesives Produced with Polymerizable Surfactants. Macromolecular Materials and Engineering, 2015, 300, 925-936.	3.6	35
44	Morphology control in polystyrene/poly(methyl methacrylate) composite latex particles. Journal of Polymer Science Part A, 2007, 45, 2484-2493.	2.3	34
45	New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight. Colloids and Surfaces B: Biointerfaces, 2015, 135, 1-7.	5.0	34
46	A new approach for mathematical modeling of the dynamic development of particle morphology. Chemical Engineering Journal, 2016, 304, 655-666.	12.7	34
47	Mechanistic investigation of the simultaneous addition and free-radical polymerization in batch miniemulsion droplets: Monte Carlo simulation versus experimental data in polyurethane/acrylic systems. Polymer, 2014, 55, 4801-4811.	3.8	33
48	Nitroxide mediated suspension polymerization of methacrylic monomers. Chemical Engineering Journal, 2017, 316, 655-662.	12.7	33
49	Morphology of Polymer/Clay Latex Particles Synthesized by Miniemulsion Polymerization: Modeling and Experimental Results. Macromolecular Reaction Engineering, 2010, 4, 432-444.	1.5	32
50	Morphology and properties of waterborne adhesives made from hybrid polyacrylic/montmorillonite clay colloidal dispersions showing improved tack and shear resistance. Colloid and Polymer Science, 2013, 291, 167-180.	2.1	32
51	Effect of the composition profile of 2-ethyl hexyl acrylate/methyl methacrylate latex particles on adhesion. Journal of Applied Polymer Science, 2001, 81, 1258-1265.	2.6	31
52	High performance water-borne paints with high volume solids based on bimodal latexes. Progress in Organic Coatings, 2010, 68, 225-233.	3.9	31
53	Control of particle size distribution for the synthesis of small particle size high solids content latexes. Polymer, 2010, 51, 4044-4052.	3.8	31
54	Estimation of reactivity ratios using emulsion copolymerization data. Journal of Polymer Science Part A, 1991, 29, 155-167.	2.3	30

#	Article	IF	Citations
55	Semicontinuous emulsion copolymerization of methyl methacrylate and ethyl acrylate. Journal of Polymer Science Part A, 1991, 29, 1549-1559.	2.3	30
56	Model-Based Control of Emulsion Terpolymers Based on Calorimetric Measurements. Polymer-Plastics Technology and Engineering, 2000, 8, 39-75.	0.7	30
57	Crosslinking in Acetoacetoxy Functional Waterborne Crosslinkable Latexes. Macromolecular Symposia, 2006, 243, 53-62.	0.7	30
58	On-line monitoring of all-acrylic emulsion polymerization reactors by Raman spectroscopy. Macromolecular Symposia, 2004, 206, 135-148.	0.7	29
59	Competitive particle growth: A tool to control the particle size distribution for the synthesis of high solids content low viscosity latexes. Chemical Engineering Journal, 2011, 168, 938-946.	12.7	28
60	Synthesis of waterborne acrylic/clay nanocomposites by controlled surface initiation from macroinitiator modified montmorillonite. European Polymer Journal, 2012, 48, 896-905.	5.4	28
61	Surfactant-Free Miniemulsion Polymerization of <i>n</i> -BA/S Stabilized by NaMMT: Films with Improved Water Resistance. Langmuir, 2013, 29, 2397-2405.	3.5	28
62	Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates. Polymer Chemistry, 2017, 8, 1728-1736.	3.9	28
63	High solids content nitroxide mediated miniemulsion polymerization of n-butyl methacrylate. Polymer Chemistry, 2017, 8, 1628-1635.	3.9	28
64	Experimental Evidence Shedding Light on the Origin of the Reduction of Branching of Acrylates in ATRP. Macromolecules, 2014, 47, 964-972.	4.8	27
65	The effect of the crosslinking agent on the performance of propranolol imprinted polymers. European Polymer Journal, 2014, 53, 282-291.	5.4	27
66	UV-Tunable Biobased Pressure-Sensitive Adhesives Containing Piperonyl Methacrylate. ACS Sustainable Chemistry and Engineering, 2019, 7, 19122-19130.	6.7	27
67	Morphology of Three-Phase PS/PBA Composite Latex Particles Containing in Situ Produced Block Copolymers. Macromolecules, 2010, 43, 1356-1363.	4.8	26
68	From Polymer Latexes to Multifunctional Liquid Marbles. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 4433-4441.	8.0	26
69	Semicontinuous seeded emulsion copolymerization of vinyl acetate and methyl acrylate. Journal of Polymer Science Part A, 1991, 29, 169-186.	2.3	25
70	Encapsulation of Clay within Polymer Particles in a High-Solids Content Aqueous Dispersion. Langmuir, 2013, 29, 9849-9856.	3.5	25
71	Modeling the Mini-Emulsion Copolymerization of N-Butyl Acrylate with a Water-Soluble Monomer: A Monte Carlo Approach. Industrial & Engineering Chemistry Research, 2014, 53, 8996-9003.	3.7	25
72	Synthesis of poly(methyl methacrylate) and block copolymers by semi-batch nitroxide mediated polymerization. Polymer Chemistry, 2016, 7, 6964-6972.	3.9	25

#	Article	IF	CITATIONS
73	In-situ phosphatization and enhanced corrosion properties of films made of phosphate functionalized nanoparticles. Reactive and Functional Polymers, 2019, 143, 104334.	4.1	25
74	Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures of Isosorbide Methacrylate Monomers. Biomacromolecules, 2020, 21, 4522-4531.	5.4	25
75	Monitoring of High Solids Content Starved-Semi-Batch Emulsion Copolymerization Reactions by Fourier Transform Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 1270-1279.	2.2	24
76	Dynamic optimization of a two-stage emulsion polymerization to obtain desired particle morphologies. Chemical Engineering Journal, 2019, 359, 1035-1045.	12.7	24
77	Copolymer composition control in emulsion polymerization using technical grade monomers. Polymer International, 1993, 30, 455-460.	3.1	23
78	Effect of the Diacrylate Ester Size on the Semicontinuous Cross-Linking Emulsion Copolymerization of BA. Macromolecules, 2005, 38, 2722-2728.	4.8	23
79	Branching at High Frequency Pulsed Laser Polymerizations of Acrylate Monomers. Macromolecules, 2011, 44, 3674-3679.	4.8	23
80	Particle nucleation and growth in seeded semibatch miniemulsion polymerization of hybrid CeO2/acrylic latexes. Polymer, 2014, 55, 752-761.	3.8	23
81	Preparation of high solids content waterborne acrylic coatings using polymerizable surfactants to improve water sensitivity. Progress in Organic Coatings, 2017, 112, 200-209.	3.9	23
82	Film forming hybrid acrylic/ZnO latexes with excellent UV absorption capacity. Chemical Engineering Journal, 2015, 270, 300-308.	12.7	22
83	Effect of in-Situ-Produced Block Copolymer on Latex Particle Morphology. Macromolecules, 2006, 39, 6969-6974.	4.8	21
84	Cross-linking emulsion copolymerization of butyl acrylate with diallyl maleate. Journal of Polymer Science Part A, 2005, 43, 4684-4694.	2.3	20
85	Polymerization of n-butyl acrylate with high concentration of a chain transfer agent (CBr4): detailed characterization and impact on branching. Polymer Chemistry, 2013, 4, 2062.	3.9	20
86	Beneficial in-situ incorporation of nanoclay to waterborne PVAc/PVOH dispersion adhesives for wood applications. International Journal of Adhesion and Adhesives, 2014, 48, 295-302.	2.9	20
87	Improving the properties of water-borne pressure sensitive adhesives by using non-migratory surfactants. International Journal of Adhesion and Adhesives, 2016, 70, 287-296.	2.9	20
88	Phase behavior of side-chain liquid-crystalline polymers containing biphenyl mesogens with different spacer lengths synthesized <i>via</i> miniemulsion polymerization. Polymer Chemistry, 2016, 7, 4736-4750.	3.9	20
89	Accelerated ageing of hybrid acrylic waterborne coatings containing metal oxide nanoparticles: Effect on the microstructure. Surface and Coatings Technology, 2017, 321, 484-490.	4.8	20
90	Kinetics of Radical Ring Opening Polymerization of the Cyclic Ketene Acetal 2-Methylene-1,3-dioxepane with Vinyl Monomers. Industrial & Engineering Chemistry Research, 2021, 60, 10479-10488.	3.7	20

#	Article	IF	CITATIONS
91	Mathematical Modeling of Multimonomer (Vinylic, Divinylic, Acidic) Emulsion Copolymerization Systems. Polymer-Plastics Technology and Engineering, 2003, 11, 627-662.	0.7	19
92	Monitoring of Emulsion Polymerization Reactors by Raman Spectroscopy: Calibration Model Maintenance. Applied Spectroscopy, 2005, 59, 1280-1285.	2.2	19
93	Stable Photocatalytic Paints Prepared from Hybrid Core-Shell Fluorinated/Acrylic/TiO2 Waterborne Dispersions. Crystals, 2016, 6, 136.	2.2	19
94	Performance of latexes containing nano-sized crystalline domains formed by comb-like polymers. Polymer, 2016, 96, 121-129.	3.8	19
95	Copolymerization of <i>n</i> à€Butyl Acrylate and Styrene: Terminal vs Penultimate Model. Macromolecular Chemistry and Physics, 2014, 215, 1668-1678.	2.2	18
96	Hybrid acrylic/CeO ₂ nanocomposites using hydrophilic, spherical and high aspect ratio CeO ₂ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 20280-20287.	10.3	18
97	Synthesis and characterization of comb-like acrylic-based polymer latexes containing nano-sized crystallizable domains. Polymer, 2016, 84, 167-177.	3.8	18
98	Dynamics of the Particle Morphology during the Synthesis of Waterborne Polymer–Inorganic Hybrids. Macromolecules, 2017, 50, 7190-7201.	4.8	18
99	Kinetics of the Aqueous-Phase Copolymerization of MAA and PEGMA Macromonomer: Influence of Monomer Concentration and Side Chain Length of PEGMA. Processes, 2017, 5, 19.	2.8	18
100	Why can Dispolreg 007 control the nitroxide mediated polymerization of methacrylates?. Polymer Chemistry, 2019, 10, 106-113.	3.9	18
101	Lactide-caprolactone copolymers with tuneable barrier properties for packaging applications. Polymer, 2020, 202, 122681.	3.8	18
102	High Temperature Free Radical Copolymerization with Depropagation and Penultimate Kinetic Effects. Macromolecular Theory and Simulations, 2005, 14, 554-559.	1.4	17
103	Highâ€Solidsâ€Content Hybrid Acrylic/CeO ₂ Latexes with Encapsulated Morphology Assessed by 3Dâ€₹EM. Macromolecular Chemistry and Physics, 2013, 214, 2157-2164.	2.2	17
104	Bulk Crosslinking Copolymerization: Comparison of Different Modeling Approaches. Macromolecular Reaction Engineering, 2014, 8, 678-695.	1.5	17
105	Insights into the Network Structure of Cross-Linked Polymers Synthesized via Miniemulsion Nitroxide-Mediated Radical Polymerization. Macromolecules, 2018, 51, 9740-9748.	4.8	17
106	Coupling HAADF-STEM Tomography and Image Reconstruction for the Precise Characterization of Particle Morphology of Composite Polymer Latexes. Macromolecules, 2019, 52, 5298-5306.	4.8	17
107	Biobased Alkali Soluble Resins promoting supramolecular interactions in sustainable waterborne Pressure-Sensitive Adhesives: High performance and removability. European Polymer Journal, 2021, 144, 110244.	5.4	17
108	Production of Widely Different Dispersed Polymers in a Continuous Taylor–Couette Reactor. Macromolecular Reaction Engineering, 2009, 3, 233-240.	1.5	16

#	Article	IF	CITATIONS
109	Experimental validation of a mathematical model for the evolution of the particle morphology of waterborne polymer-polymer hybrids: Paving the way to the design and implementation of optimal polymerization strategies. Chemical Engineering Journal, 2019, 363, 259-269.	12.7	16
110	Assessing the Effect of CeO2 Nanoparticles as Corrosion Inhibitor in Hybrid Biobased Waterborne Acrylic Direct to Metal Coating Binders. Polymers, 2021, 13, 848.	4.5	16
111	Model Reduction in Emulsion Polymerization Using Hybrid First-Principles/Artificial Neural Network Models. Macromolecular Theory and Simulations, 2003, 12, 42-56.	1.4	15
112	Branching and crosslinking in emulsion polymerization. Macromolecular Symposia, 2004, 206, 149-164.	0.7	15
113	Toward the minimization of fluorescence loss in hybrid cross-linked core-shell PS/QD/PMMA nanoparticles: Effect of the shell thickness. Chemical Engineering Journal, 2017, 313, 261-269.	12.7	15
114	Effective incorporation of ZnO nanoparticles by miniemulsion polymerization in waterborne binders for steel corrosion protection. Journal of Coatings Technology Research, 2017, 14, 829-839.	2.5	15
115	Importance of film morphology on the performance of thermo-responsive waterborne pressure sensitive adhesives. European Polymer Journal, 2018, 98, 63-71.	5.4	15
116	Combined Effect of Crystalline Nanodomains and <i>in Situ</i> Phosphatization on the Anticorrosion Properties of Waterborne Composite Latex Films. Industrial & Engineering Chemistry Research, 2019, 58, 21022-21030.	3.7	15
117	Nitroxide mediated copolymerization of acrylates, methacrylates and styrene: The importance of side reactions in the polymerization of acrylates. European Polymer Journal, 2019, 110, 319-329.	5.4	15
118	Evolution of particle morphology during the synthesis of hybrid acrylic/CeO ₂ nanocomposites by miniemulsion polymerization. Journal of Polymer Science Part A, 2015, 53, 792-799.	2.3	14
119	Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy. Macromolecules, 2021, 54, 995-1005.	4.8	14
120	Seeded semibatch emulsion polymerization ofn-butyl acrylate: Effect of the seed properties. Journal of Polymer Science Part A, 2002, 40, 2878-2883.	2.3	13
121	Unexpected Crosslinking During Acetoacetoxy Group Protection on Waterborne Crosslinkable Latexes. Macromolecular Materials and Engineering, 2006, 291, 1185-1193.	3.6	13
122	Toward Understanding the Architecture (Branching and MWD) of Crosslinked Acrylic Latexes. Macromolecular Chemistry and Physics, 2013, 214, 589-598.	2.2	13
123	Molecular weight development in emulsion copolymerization ofn-butyl acrylate and styrene. Journal of Applied Polymer Science, 2003, 87, 1918-1926.	2.6	12
124	Kinetics of the emulsion copolymerization of MMA/BA in the presence of sodium montmorillonite. Applied Clay Science, 2011, 51, 110-116.	5.2	12
125	Mathematical Modeling of Carboxylated <scp>SB</scp> Latexes. Macromolecular Reaction Engineering, 2014, 8, 329-346.	1.5	12
126	Adding magnetic ionic liquid monomers to the emulsion polymerization tool-box: Towards polymer latexes and coatings with new properties. Journal of Polymer Science Part A, 2016, 54, 1145-1152.	2.3	12

#	Article	IF	CITATIONS
127	Photocatalytic and magnetic titanium dioxide/polystyrene/magnetite composite hybrid polymer particles. Journal of Polymer Science Part A, 2016, 54, 3350-3356.	2.3	12
128	Safety in Emulsion Polymerization Reactors: An Experimental Study. Macromolecular Materials and Engineering, 2005, 290, 242-249.	3.6	11
129	Effect of Reaction Temperature on the Gel Content of Acrylic Latexes. Macromolecular Reaction Engineering, 2009, 3, 11-15.	1.5	11
130	Quantitative study on the homogeneity of networks synthesized by nitroxide-mediated radical copolymerization of styrene and divinylbenzene. European Polymer Journal, 2016, 85, 244-255.	5.4	11
131	PS/PMMA dSe/ZnS Quantum Dots Hybrid Nanofibers for VOCs Sensors. Israel Journal of Chemistry, 2018, 58, 1347-1355.	2.3	11
132	Dynamic Optimization and Nonâ€linear Model Predictive Control to Achieve Targeted Particle Morphologies. Chemie-Ingenieur-Technik, 2019, 91, 323-335.	0.8	11
133	Easy removable and UV tunable biobased waterborne pressure sensitive adhesives. International Journal of Adhesion and Adhesives, 2021, 108, 102860.	2.9	11
134	Monitoring the evolution of the microstructure of vinyl silane monomer containing poly(vinyl) Tj ETQq0 0 0 rgBT	/Oygrlock	10 Jf 50 462
135	Green Electrospinning of Polymer Latexes: A Systematic Study of the Effect of Latex Properties on Fiber Morphology. Nanomaterials, 2021, 11, 706.	4.1	10
136	Polymerization of Nâ€Vinyl Formamide in Homogeneous and Heterogeneous Media and Surfactant Free Emulsion Polymerization of <scp>MMA</scp> Using Polyvinylamine as Stabilizer. Macromolecular Symposia, 2013, 333, 80-92.	0.7	9
137	Waterborne paints containing nano-sized crystalline domains formed by comb-like polymers. Progress in Organic Coatings, 2017, 106, 11-19.	3.9	9
138	Impact of the in-situ phosphatization on the corrosion resistance of steel coated with fluorinated waterborne binders assessed by SKP and EIS. Progress in Organic Coatings, 2020, 148, 105706.	3.9	9
139	Renewable feedstocks in emulsion polymerization: Coating and adhesive applications. Advances in Chemical Engineering, 2020, 56, 139-186.	0.9	9
140	Incorporation of novel degradable oligoester crosslinkers into waterborne pressure sensitive adhesives: towards removable adhesives. Green Chemistry, 2020, 22, 3272-3282.	9.0	9
141	Unimodal Particle Size Distribution Latexes: Effect of Reaction Conditions on Viscosity and Stability at High Solids Content. Macromolecular Reaction Engineering, 2011, 5, 361-372.	1.5	8
142	<scp>E</scp> ffect of the Incorporation of Modified Silicas on the Final Properties of Wood Adhesives. Macromolecular Reaction Engineering, 2013, 7, 527-537.	1.5	8
143	Anionic Polymerizable Surfactants and Stabilizers in Emulsion Polymerization: A Comparative Study. Macromolecular Reaction Engineering, 2017, 11, 1600033.	1.5	8
144	Copolymerization of (meth)acrylates with vinyl aromatic macromonomers: understanding the mechanism of retardation on the kinetics with acrylates. Polymer Chemistry, 2019, 10, 1769-1779.	3.9	8

#	Article	IF	Citations
145	Characterization of Comb Shaped MAA―co â€PEGMA Copolymers Synthesized by Freeâ€Radical Polymerization. Macromolecular Reaction Engineering, 2020, 14, 2000015.	1.5	8
146	Emulsion Copolymerization of Vinyl Acetate and Vinyl Silanes: Kinetics and Development of Microstructure. Macromolecular Reaction Engineering, 2020, 14, 1900043.	1.5	8
147	On-line control of the particle morphology of composite polymer-polymer waterborne dispersions. Chemical Engineering Journal, 2021, 408, 127253.	12.7	8
148	High biobased content waterborne latexes stabilized with casein. Progress in Organic Coatings, 2022, 168, 106870.	3.9	8
149	Morphology of Composite Polymer Latexes: An Update on Synthesis and Applications, Modeling, and Characterization. Advances in Polymer Science, 2017, , 105-141.	0.8	7
150	Closed-loop in-silico control of a two-stage emulsion polymerization to obtain desired particle morphologies. Chemical Engineering Journal, 2021, 414, 128808.	12.7	7
151	Characterization of grafting properties of ABS latexes: ATR-FTIR vs NMR spectroscopy. Polymer, 2022, 253, 124997.	3.8	7
152	(Cryo)-TEM Assessment of Droplet Nucleation Efficiency in Hybrid Acrylic/CeO ₂ Semibatch Miniemulsion Polymerization. Macromolecules, 2014, 47, 8404-8410.	4.8	6
153	Co-encapsulation of CdSe/ZnS and CeO ₂ nanoparticles in waterborne polymer dispersions: enhancement of fluorescence emission under sunlight. Soft Matter, 2017, 13, 8039-8047.	2.7	6
154	Oilâ€Based versus Bioâ€Based C8 Alkyl Chain (Meth)Acrylates in Emulsion Polymerization: Kinetics and Microstructure. Macromolecular Reaction Engineering, 2022, 16, .	1.5	6
155	Radical initiator modified cerium oxide nanoparticles for polymer encapsulation via grafting from the surface. RSC Advances, 2014, 4, 61863-61868.	3.6	5
156	Capillary hydrodynamic fractionation of hydrophobic colloids: Errors in the estimated particle size distribution. Particuology, 2014, 17, 97-105.	3.6	5
157	Acrylic-based composite latexes containing nano-sized liquid crystalline domains. Polymer, 2017, 108, 288-300.	3.8	5
158	Modelling and control of the microstructure of comb-like poly(MAA- <i>co</i> -PEGMA) water-soluble copolymers. Polymer Chemistry, 2019, 10, 1000-1009.	3.9	5
159	Evolution of the film properties of 3â€methacryloxypropyl trimethoxysilane containing waterborne acrylic coatings during storage. Journal of Applied Polymer Science, 2021, 138, 49796.	2.6	5
160	Lactide-Valerolactone Copolymers for Packaging Applications. Polymers, 2022, 14, 52.	4.5	5
161	Model Reduction in Emulsion Polymerization Using Hybrid First Principles/Artificial Neural Networks Models, 2. Macromolecular Theory and Simulations, 2005, 14, 125-132.	1.4	4
162	Sensors, Process Control and Modeling in Polymer Production. Macromolecular Reaction Engineering, 2009, 3, 324-325.	1.5	4

#	Article	IF	Citations
163	Surfactant-free poly(methyl methacrylate)/poly(vinylamine) (PMMA/PVAm) amphiphilic core-shell polymer particles. Colloid and Polymer Science, 2017, 295, 135-144.	2.1	4
164	Cross-Contamination From Vial Caps for SEC Analysis Determined by MALDI-TOF Mass Spectrometry. Journal of Chromatographic Science, 2017, 55, 137-141.	1.4	4
165	Phase Separation Driven On-Demand Debondable Waterborne Pressure-Sensitive Adhesives. Polymers, 2018, 10, 975.	4.5	4
166	Multilobular morphology: the key for biphase multifunctional nanogels. Soft Matter, 2021, 17, 9353-9362.	2.7	4
167	Incorporation of a Coumarate Based Corrosion Inhibitor in Waterborne Polymeric Binders for Corrosion Protection Applications. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
168	Strategies to incorporate a fluorinated acrylate monomer into polymer particles: from particle morphology to film morphology and anticorrosion properties. Colloid and Polymer Science, 2022, 300, 429-443.	2.1	4
169	Emulsion Copolymerisation: Process Strategies and Morphology. , 0, , 79-110.		3
170	Understanding the emulsion copolymerization kinetics of vinyl acetate and vinyl silanes. Polymer Chemistry, 2020, 11 , 2390-2398.	3.9	3
171	Knowledge-based control of emulsion polymerization: Tailoring adhesive properties. Journal of Coatings Technology Research, 2004, 1, 45-51.	2.5	2
172	Seeded Semibatch Emulsion Copolymerization of Styrene, Butadiene, and Carboxylic Acids in a Pilot Plant Reactor. Macromolecular Reaction Engineering, 2014, 8, 217-226.	1.5	2
173	Characterization of poly (<i>N</i> â€vinyl formamide) by size exclusion chromatography–multiangle light scattering and asymmetricâ€flow fieldâ€flow fractionation–multiangle light scattering. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
174	Multi-wavelength UV-detection in capillary hydrodynamic fractionation. Data treatment for an absolute estimate of the particle size distribution. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 168-175.	2.3	2
175	New agitated and thermostatized cell for <i>in situ</i> in situSAXS. Journal of Synchrotron Radiation, 2009, 16, 869-871.	2.4	1
176	Thermal and mechanical characterization of films based on poly(vinyl alcohol) and $\hat{l}^2\hat{a}\in \hat{l}$ actoglobulin blends. Journal of Applied Polymer Science, 2015, 132, .	2.6	1
177	Combining SEC & MALDI for characterization of the continuous phase in dispersion polymerization. European Polymer Journal, 2018, 105, 265-273.	5.4	1
178	Waterborne Acrylic/CeO2 Nanocomposites for UV Blocking Clear Coats. , 2019, , .		1
179	Modeling the Kinetics and Microstructure of a Thermally Initiated Thiolâ€Ene Polymerization. Macromolecular Reaction Engineering, 0, , 2100034.	1.5	1
180	Taking Advantage of Phosphate Functionalized Waterborne Acrylic Binders to Get Rid of Inhibitors in Direct-to-Metal Paints. Polymers, 2022, 14, 316.	4.5	1

#	Article	IF	CITATIONS
181	On-Line Control of Molecular Weight Distribution in Semibatch Emulsion Polymerization Using CTA. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 213-218.	0.4	0
182	Knowledge-based development of emulsion polymerization processes for tailoring of polymer latex properties. , 0, , 1-6.		0
183	Routes towards the Synthesis of Waterborne Acrylic/Clay Nanocomposites. , 0, , 209-227.		O
184	Macromol. React. Eng. 7/2009. Macromolecular Reaction Engineering, 2009, 3, NA-NA.	1.5	0
185	New Frontiers in Polymer Engineering. Macromolecular Reaction Engineering, 2010, 4, 367-368.	1.5	O
186	Control of Polymerization Processes. , 2017, , .		0
187	Asymmetric-Flow Field-Flow Fractionation of complex waterborne polymer dispersions: Effect of the concentration of water in the measurement of molar mass distributions. Journal of Chromatography A, 2021, 1652, 462363.	3.7	0