Mohammad T Jafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High efficient solid-phase microextraction based on a covalent organic framework for determination of trifluralin and chlorpyrifos in water and food samples by GC-CD-IMS. Food Chemistry, 2022, 373, 131527.	8.2	28
2	Investigation of different alcoholic modifiers for the separation and determination of two isomers of dinitrotoluene (2,4 and 2,6) by ion mobility spectrometry. Rapid Communications in Mass Spectrometry, 2022, 36, e9274.	1.5	0
3	Self-rotating stir mesh screen sorptive extraction for analyzing chlorpyrifos by ion mobility spectrometry. Analytical Methods, 2021, 13, 2631-2644.	2.7	2
4	Synthesis and characterization of a new ZIF-67@MgAl ₂ O ₄ nanocomposite and its adsorption behaviour. RSC Advances, 2021, 11, 13245-13255.	3.6	22
5	Covalent triazine-based framework-grafted functionalized fibrous silica sphere as a solid-phase microextraction coating for simultaneous determination of fenthion and chlorpyrifos by ion mobility spectrometry. Mikrochimica Acta, 2021, 188, 4.	5.0	20
6	Cobalt metal–organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies. RSC Advances, 2021, 11, 2643-2655.	3.6	26
7	Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate. Journal of Chemical Sciences, 2021, 133, 1.	1.5	11
8	Novel UiOâ€66â€NH ₂ /Gly/GO Nanocomposite Adsorbent for Ultraâ€ŧrace Analyzing of Chlorpyrifos Pesticide by Ion Mobility Spectrometry. ChemistrySelect, 2021, 6, 3370-3377.	1.5	7
9	Centrifuge-free dispersive liquid-liquid microextraction coupled with thin-film microextraction for the preconcentration of molinate in real samples by ion mobility spectrometry. Talanta, 2021, 225, 122027.	5.5	7
10	In situ growth of copper-based metal-organic framework on a helical shape copper wire as a sorbent in stir-bar sorptive extraction of fenthion followed by corona discharge ion mobility spectrometry. Journal of Chromatography A, 2021, 1651, 462279.	3.7	8
11	Ultrasonic Piezoelectric Nebulization of Propoxur for the Determination by Corona Discharge Ionization Ion Mobility Spectrometry. Analytical Sciences, 2020, 36, 227-232.	1.6	3
12	Electrochemically prepared three-dimensional reduced graphene oxide-polyaniline nanocomposite as a solid-phase microextraction coating for ethion determination. Talanta, 2020, 209, 120576.	5.5	18
13	Organic solvent supported silica aerogel thin film microextraction: An efficient sample preparation method for ion mobility spectrometry. Microchemical Journal, 2020, 159, 105551.	4.5	12
14	Solvent holder-assisted liquid-phase microextraction using nano-structure biomass-derived carbonaceous aerogel combined with ion mobility spectrometry for simultaneous determination of ethion and chlorpyrifos. Mikrochimica Acta, 2020, 187, 232.	5.0	9
15	Direct molecular imprinting technique to synthesize coated electrospun nanofibers for selective solid-phase microextraction of chlorpyrifos. Mikrochimica Acta, 2019, 186, 524.	5.0	22
16	Mg-Al-CO3 layered double hydroxide reinforced polymer inclusion membrane as an extractant phase for thin-film microextraction of cyanide from environmental water samples. Environmental Science and Pollution Research, 2019, 26, 27854-27861.	5.3	12
17	Coupling of a novel electrospun polyacrylonitrile/amino-Zr-MOF nanofiber as a thin film for microextraction-corona discharge-ion mobility spectrometry for the analysis of chlorpyrifos in water samples. Analytical Methods, 2019, 11, 1073-1079.	2.7	26
18	An amino-functionalized zirconium-based metal–organic framework/graphene oxide nanocomposite for 2,4-dichlorophenoxyacetic acid determination by ion mobility spectrometry. Analytical Methods, 2019, 11, 2929-2936.	2.7	13

Mohammad T Jafari

#	Article	IF	CITATIONS
19	Molecularly imprinted graphite spray ionization-ion mobility spectrometry: application to trace analysis of the pesticide propoxur. Mikrochimica Acta, 2019, 186, 396.	5.0	6
20	Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction - ion mobility spectrometry. Microchemical Journal, 2019, 144, 195-202.	4.5	22
21	Thin film nanofibers containing ZnTiO3 nanoparticles for rapid evaporation of extraction solvent: application to the preconcentration of chlorpyrifos prior to its quantification by ion mobility spectrometry. Mikrochimica Acta, 2019, 186, 35.	5.0	13
22	Flexible/self-supported zeolitic imidazolate framework-67 film as an adsorbent for thin-film microextraction. Microchemical Journal, 2019, 146, 98-105.	4.5	12
23	Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Mikrochimica Acta, 2019, 186, 88.	5.0	39
24	Magnetic Dual-template Molecularly Imprinted Polymer Nanoparticles for the Simultaneous Determination of Acetaminophen and Codeine in Urine Samples by Ion Mobility Spectrometry. Analytical Sciences, 2018, 34, 297-301.	1.6	18
25	Aptamer-modified carbon nanomaterial based sorption coupled to paper spray ion mobility spectrometry for highly sensitive and selective determination of methamphetamine. Mikrochimica Acta, 2018, 185, 103.	5.0	32
26	Zirconium dioxide-reduced graphene oxide nanocomposite-coated stir-bar sorptive extraction coupled with ion mobility spectrometry for determining ethion. Talanta, 2018, 182, 285-291.	5.5	32
27	Sol–gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for the determination of diazinon in water samples. Journal of Separation Science, 2018, 41, 493-500.	2.5	14
28	Design and construction of an injection port for coupling stir-bar sorptive extraction with ion mobility spectrometry. Talanta, 2018, 178, 369-376.	5.5	25
29	Porous graphite sheet spray ionization ion mobility spectrometry. Journal of Mass Spectrometry, 2018, 53, 1135-1142.	1.6	2
30	Sol-gel electrospinning preparation of hybrid carbon silica nanofibers for extracting organophosphorus pesticides prior to analyzing them by gas chromatography-ion mobility spectrometry. Journal of Chromatography A, 2018, 1558, 1-13.	3.7	24
31	Design of an ultrasonic piezoelectric injection port for analysis of thermally unstable compounds using corona discharge ion mobility spectrometry. Analytica Chimica Acta, 2018, 1038, 79-86.	5.4	3
32	Effect of halide ions on secondary electrospray ionization-ion mobility spectrometry for the determination of TNT extracted by dispersive liquid-liquid microextraction. International Journal of Mass Spectrometry, 2018, 433, 19-24.	1.5	13
33	Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry. Talanta, 2017, 167, 486-492.	5.5	Ο
34	Chemically modified halloysite nanotubes as a solid–phase microextraction coating. Analytica Chimica Acta, 2017, 964, 85-95.	5.4	15
35	Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry. Analytica Chimica Acta, 2017, 953, 32-39.	5.4	2
36	Immobilized aptamer paper spray ionization source for ion mobility spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2017, 132, 232-237.	2.8	29

#	Article	IF	CITATIONS
37	Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion. Analytica Chimica Acta, 2016, 926, 55-62.	5.4	32
38	Combination of dispersive liquid–liquid microextraction and solid–phase microextraction: An efficient hyphenated sample preparation method. Journal of Chromatography A, 2016, 1466, 50-58.	3.7	20
39	Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. Journal of Chromatography A, 2016, 1429, 30-39.	3.7	86
40	Towards metals analysis using corona discharge ionization ion mobility spectrometry. Analytica Chimica Acta, 2016, 909, 84-90.	5.4	6
41	Negative corona discharge-ion mobility spectrometry as a detection system for low density extraction solvent-based dispersive liquid–liquid microextraction. Talanta, 2015, 134, 724-731.	5.5	12
42	Sol–gel/nanoclay composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water samples. Analytical and Bioanalytical Chemistry, 2015, 407, 1241-1252.	3.7	40
43	Coupling of solid phase microextraction with electrospray ionization ion mobility spectrometry and direct analysis of venlafaxine in human urine and plasma. Analytica Chimica Acta, 2015, 853, 460-468.	5.4	21
44	Selective extraction and analysis of pioglitazone in cow plasma using a molecularly imprinted polymer combined with ESI ion mobility spectrometry. Journal of Separation Science, 2014, 37, 573-579.	2.5	15
45	Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid–liquid microextraction. Journal of Chromatography A, 2014, 1343, 63-68.	3.7	30
46	Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography–corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Analytica Chimica Acta, 2014, 814, 69-78.	5.4	112
47	Simultaneous Determination of Nitrite and Nitrate in Potato and Water Samples Using Negative Electrospray Ionization Ion Mobility Spectrometry. Analytical Sciences, 2012, 28, 391-395.	1.6	14
48	A new approach to determine salicylic acid in human urine and blood plasma based on negative electrospray ion mobility spectrometry after selective separation using a molecular imprinted polymer. Talanta, 2012, 99, 520-526.	5.5	32
49	Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters. Journal of Chromatography A, 2012, 1249, 41-47.	3.7	37
50	Determination of desipramine in biological samples using liquid–liquid–liquid microextraction combined with inâ€syringe derivatization, gas chromatography, and nitrogen/phosphorus detection. Journal of Separation Science, 2012, 35, 2637-2644.	2.5	8
51	Design for Gas Chromatography–Corona Discharge–Ion Mobility Spectrometry. Analytical Chemistry, 2012, 84, 10077-10084.	6.5	19
52	Low-Temperature Plasma Ionization Ion Mobility Spectrometry. Analytical Chemistry, 2011, 83, 797-803.	6.5	51
53	Selective pretreatment and determination of phenazopyridine using an imprinted polymer-electrospray ionization ion mobility spectrometry system. Talanta, 2011, 83, 765-769.	5.5	21
54	Electrospray ionization-ion mobility spectrometry as a detection system for three-phase hollow fiber microextraction technique and simultaneous determination of trimipramine and desipramine in urine and plasma samples. Analytical and Bioanalytical Chemistry, 2011, 399, 3555-3564.	3.7	24

Mohammad T Jafari

#	Article	IF	CITATIONS
55	A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. Food Chemistry, 2011, 126, 1964-1970.	8.2	87
56	Hollow fiber-based liquid–liquid–liquid microextraction combined with electrospray ionization-ion mobility spectrometry for the determination of pentazocine in biological samples. Journal of Chromatography A, 2010, 1217, 5173-5178.	3.7	20
57	Selective Method Based on Negative Electrospray Ionization Ion Mobility Spectrometry for Direct Analysis of Salivary Thiocyanate. Analytical Chemistry, 2010, 82, 6721-6725.	6.5	17
58	Ion Mobility Spectrometry as a Detector for Molecular Imprinted Polymer Separation and Metronidazole Determination in Pharmaceutical and Human Serum Samples. Analytical Chemistry, 2009, 81, 3585-3591.	6.5	74
59	Improved design for high resolution electrospray ionization ion mobility spectrometry. Talanta, 2009, 77, 1632-1639.	5.5	39
60	Selective separation and determination of primidone in pharmaceutical and human serum samples using molecular imprinted polymer-electrospray ionization ion mobility spectrometry (MIP-ESI-IMS). Talanta, 2009, 79, 669-675.	5.5	31
61	Simultaneous Determination of 2-Furfural and 5-Methyl-2-furfural Using Corona Discharge Ion Mobility Spectrometry. Analytical Sciences, 2009, 25, 801-805.	1.6	10
62	Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry. Talanta, 2008, 76, 1189-1193.	5.5	13
63	Design for Electrospray Ionization-Ion Mobility Spectrometry. Analytical Chemistry, 2007, 79, 3199-3205.	6.5	37
64	Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Analytica Chimica Acta, 2007, 581, 147-153.	5.4	64
65	Analysis of Sevin, Amitraz, and Metalaxyl Pesticides Using Ion Mobility Spectrometry. Analytical Letters, 2006, 39, 2061-2071.	1.8	12
66	Quantitative analysis of morphine and noscapine using corona discharge ion mobility spectrometry with ammonia reagent gas. Talanta, 2006, 69, 795-799.	5.5	59
67	Determination and identification of malathion, ethion and dichlorovos using ion mobility spectrometry. Talanta, 2006, 69, 1054-1058.	5.5	38
68	Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta, 2003, 59, 327-333.	5.5	128
69	Monitoring of Diazinon in Soil Samples by Ion Mobility Spectrometry. Communications in Soil Science and Plant Analysis, 0, , 1-15.	1.4	0