
## Diego Iribarren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363254/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Energy-socio-economic-environmental modelling for the EU energy and post-COVID-19 transitions.<br>Science of the Total Environment, 2022, 805, 150329.                                                     | 8.0  | 27        |
| 2  | Social Life Cycle Assessment of a Proton Exchange Membrane Fuel Cell stack. E3S Web of Conferences, 2022, 334, 09001.                                                                                      | 0.5  | 3         |
| 3  | Social life cycle assessment of green methanol and benchmarking against conventional fossil<br>methanol. Science of the Total Environment, 2022, 824, 153840.                                              | 8.0  | 16        |
| 4  | Definition, assessment and prioritisation of strategies to mitigate social life-cycle impacts across the supply chain of bioelectricity: A case study in Portugal. Renewable Energy, 2022, 194, 1110-1118. | 8.9  | 6         |
| 5  | Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture. Energy, 2022, 255, 124617.                                                                               | 8.8  | 6         |
| 6  | A taxonomy of models for investigating hydrogen energy systems. Renewable and Sustainable Energy<br>Reviews, 2022, 167, 112698.                                                                            | 16.4 | 19        |
| 7  | Hourly marginal electricity mixes and their relevance for assessing the environmental performance of installations with variable load or power. Science of the Total Environment, 2022, 843, 156963.       | 8.0  | 10        |
| 8  | Harmonised carbon and energy footprints of fossil hydrogen. International Journal of Hydrogen<br>Energy, 2021, 46, 17587-17594.                                                                            | 7.1  | 11        |
| 9  | Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes. Bioresource Technology, 2021, 321, 124528.                                                    | 9.6  | 16        |
| 10 | Coupled life cycle thinking and data envelopment analysis for quantitative sustainability improvement. , 2021, , 295-320.                                                                                  |      | 6         |
| 11 | Comparative life cycle sustainability assessment of renewable and conventional hydrogen. Science of the Total Environment, 2021, 756, 144132.                                                              | 8.0  | 43        |
| 12 | Comparative life cycle assessment of hydrogen-fuelled passenger cars. International Journal of<br>Hydrogen Energy, 2021, 46, 35961-35973.                                                                  | 7.1  | 64        |
| 13 | Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems. International Journal of Environmental Research and Public Health, 2021, 18, 4918.                                         | 2.6  | 11        |
| 14 | Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production. Science of the Total Environment, 2021, 771, 145432.                                        | 8.0  | 64        |
| 15 | Life cycle sustainability assessment of synthetic fuels from date palm waste. Science of the Total<br>Environment, 2021, 796, 148961.                                                                      | 8.0  | 13        |
| 16 | Modeling, simulation and lifeâ€cycle assessment of the use of bioâ€oil and char in conventional refineries. Biofuels, Bioproducts and Biorefining, 2020, 14, 30-42.                                        | 3.7  | 9         |
| 17 | Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. International Journal of Hydrogen Energy, 2020, 45, 25758-25765.   | 7.1  | 39        |
| 18 | Efficiency assessment of diets in the Spanish regions: A multi-criteria cross-cutting approach. Journal of Cleaner Production, 2020, 242, 118491.                                                          | 9.3  | 18        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sustainability-oriented efficiency of retail supply chains: A combination of Life Cycle Assessment and<br>dynamic network Data Envelopment Analysis. Science of the Total Environment, 2020, 705, 135977. | 8.0  | 33        |
| 20 | Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Applied Energy, 2020, 259, 114121.                                                     | 10.1 | 57        |
| 21 | Harmonised life-cycle indicators of nuclear-based hydrogen. International Journal of Hydrogen<br>Energy, 2020, 46, 29724-29724.                                                                           | 7.1  | 5         |
| 22 | Long-term production technology mix of alternative fuels for road transport: A focus on Spain.<br>Energy Conversion and Management, 2020, 226, 113498.                                                    | 9.2  | 31        |
| 23 | A protocol for the definition of supply chains in product social life cycle assessment: application to bioelectricity. Sustainable Energy and Fuels, 2020, 4, 5533-5542.                                  | 4.9  | 20        |
| 24 | Life cycle assessment of trigeneration plants. , 2020, , 125-139.                                                                                                                                         |      | 1         |
| 25 | An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway. Sustainable Energy and Fuels, 2020, 4, 3992-4002.                                            | 4.9  | 31        |
| 26 | Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential. Energy, 2020, 200, 117452.              | 8.8  | 10        |
| 27 | Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios. Energy, 2020, 196, 117179.                                                       | 8.8  | 15        |
| 28 | Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 2020, 157, 104778.                    | 10.8 | 112       |
| 29 | Sensitivity of operational and environmental benchmarks of retail stores to decision-makers'<br>preferences through Data Envelopment Analysis. Science of the Total Environment, 2020, 718, 137330.       | 8.0  | 12        |
| 30 | Prospective carbon footprint comparison of hydrogen options. Science of the Total Environment, 2020, 728, 138212.                                                                                         | 8.0  | 34        |
| 31 | Validation of GreenH2armony® as a Tool for the Computation of Harmonised Life-Cycle Indicators of Hydrogen. Energies, 2020, 13, 1603.                                                                     | 3.1  | 5         |
| 32 | Lessons for regional energy modelling: enhancing demand-side transport and residential policies in<br>Madrid. Regional Studies, 2019, 53, 826-837.                                                        | 4.4  | 3         |
| 33 | Long-term opportunities for electricity production through municipal solid waste incineration when internalising external costs. Journal of Cleaner Production, 2019, 215, 870-877.                       | 9.3  | 28        |
| 34 | End of life of fuel cells and hydrogen products: From technologies to strategies. International<br>Journal of Hydrogen Energy, 2019, 44, 20965-20977.                                                     | 7.1  | 57        |
| 35 | Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. International Journal of Hydrogen Energy, 2019, 44, 21193-21203.                     | 7.1  | 73        |
| 36 | Sustainability-oriented management of retail stores through the combination of life cycle assessment and dynamic data envelopment analysis. Science of the Total Environment, 2019, 683, 49-60.           | 8.0  | 15        |

| #  | Article                                                                                                                                                                                                                               | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A review of techno-economic data for road transportation fuels. Renewable and Sustainable Energy<br>Reviews, 2019, 112, 11-26.                                                                                                        | 16.4 | 93        |
| 38 | Combined use of Data Envelopment Analysis and Life Cycle Assessment for operational and<br>environmental benchmarking in the service sector: A case study of grocery stores. Science of the<br>Total Environment, 2019, 667, 799-808. | 8.0  | 30        |
| 39 | Life Cycle Costing and Eco-Efficiency Assessment of Fuel Production by Coprocessing Biomass in<br>Crude Oil Refineries. Energies, 2019, 12, 4664.                                                                                     | 3.1  | 12        |
| 40 | Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: A life-cycle study with and without external costs. Science of the Total Environment, 2019, 650, 1465-1475.        | 8.0  | 61        |
| 41 | Cumulative Energy Demand of Hydrogen Energy Systems. Environmental Footprints and Eco-design of<br>Products and Processes, 2019, , 47-75.                                                                                             | 1.1  | 2         |
| 42 | Enhanced prioritisation of prospective scenarios for power generation in Spain: How and which one?.<br>Energy, 2019, 169, 369-379.                                                                                                    | 8.8  | 11        |
| 43 | Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and<br>Fischer-Tropsch synthesis. Fuel, 2019, 235, 1492-1500.                                                                               | 6.4  | 56        |
| 44 | How do methodological choices affect the carbon footprint of microalgal biodiesel? A harmonised life cycle assessment. Journal of Cleaner Production, 2019, 207, 560-568.                                                             | 9.3  | 24        |
| 45 | Harmonising methodological choices in life cycle assessment of hydrogen: A focus on acidification<br>and renewable hydrogen. International Journal of Hydrogen Energy, 2019, 44, 19426-19433.                                         | 7.1  | 35        |
| 46 | Prospective Assessment of the Carbon Footprint of a National Power Generation System.<br>Environmental Footprints and Eco-design of Products and Processes, 2019, , 1-17.                                                             | 1.1  | 1         |
| 47 | Exergy analysis of hydrogen production via biogas dry reforming. International Journal of Hydrogen<br>Energy, 2018, 43, 11688-11695.                                                                                                  | 7.1  | 50        |
| 48 | Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications. Renewable Energy, 2018, 126, 202-209.                                                     | 8.9  | 30        |
| 49 | Towards Energy Self-sufficiency in Large Metropolitan Areas: Business Opportunities on Renewable<br>Electricity in Madrid. , 2018, , 17-31.                                                                                           |      | 1         |
| 50 | Harmonising the cumulative energy demand of renewable hydrogen for robust comparative life-cycle studies. Journal of Cleaner Production, 2018, 175, 384-393.                                                                          | 9.3  | 45        |
| 51 | Is coal extension a sensible option for energy planning? A combined energy systems modelling and life cycle assessment approach. Energy Policy, 2018, 114, 413-421.                                                                   | 8.8  | 29        |
| 52 | Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle<br>assessment and dynamic data envelopment analysis approach. Science of the Total Environment, 2018,<br>615, 29-37.                | 8.0  | 53        |
| 53 | Life-cycle consequences of internalising socio-environmental externalities of power generation.<br>Science of the Total Environment, 2018, 612, 386-391.                                                                              | 8.0  | 23        |
| 54 | Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: A focus on alternative biogas uses. Bioresource Technology, 2018, 270, 138-146.                                                            | 9.6  | 55        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Potentials and Limitations of Combined Life Cycle Approaches and Multi-dimensional Assessment. , 2018, , 313-316.                                                                                                                                   |      | 1         |
| 56 | Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain. Energies, 2018, 11, 1185.                                                                                      | 3.1  | 20        |
| 57 | Exergy analysis of alternative configurations of a system coproducing synthetic fuels and electricity via biomass gasification, Fischer-Tropsch synthesis and a combined-cycle scheme. Fuel, 2017, 194, 375-394.                                    | 6.4  | 40        |
| 58 | Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers. Applied Energy, 2017, 190, 891-901.                                                              | 10.1 | 60        |
| 59 | A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria<br>decision analysis for sustainability assessment of energy systems. Journal of Cleaner Production, 2017,<br>150, 164-174.                          | 9.3  | 159       |
| 60 | Harmonised life-cycle global warming impact of renewable hydrogen. Journal of Cleaner Production, 2017, 149, 762-772.                                                                                                                               | 9.3  | 85        |
| 61 | Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to<br>Wind Farms. Resources, 2016, 5, 8.                                                                                                                  | 3.5  | 13        |
| 62 | Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power<br>Generation Model. Resources, 2016, 5, 39.                                                                                                     | 3.5  | 36        |
| 63 | Life-cycle performance of hydrogen production via indirect biomass gasification with CO2 capture.<br>International Journal of Hydrogen Energy, 2016, 41, 19484-19491.                                                                               | 7.1  | 88        |
| 64 | Delving into sensible measures to enhance the environmental performance of biohydrogen: A<br>quantitative approach based on process simulation, life cycle assessment and data envelopment<br>analysis. Bioresource Technology, 2016, 214, 376-385. | 9.6  | 45        |
| 65 | Assessing the social acceptance of hydrogen for transportation in Spain: An unintentional focus on target population for a potential hydrogen economy. International Journal of Hydrogen Energy, 2016, 41, 5203-5208.                               | 7.1  | 48        |
| 66 | Integration of life-cycle indicators into energy optimisation models: the case study of power generation in Norway. Journal of Cleaner Production, 2016, 112, 2693-2696.                                                                            | 9.3  | 55        |
| 67 | Screening of socio-economic indicators for sustainability assessment: a combined life cycle<br>assessment and data envelopment analysis approach. International Journal of Life Cycle Assessment,<br>2016, 21, 202-214.                             | 4.7  | 38        |
| 68 | Life cycle assessment of pyrolysis oil applications. Biomass Conversion and Biorefinery, 2015, 5, 1.                                                                                                                                                | 4.6  | 7         |
| 69 | Methodology for Carbon Footprint Calculation in Crop and Livestock Production. , 2015, , 80-103.                                                                                                                                                    |      | Ο         |
| 70 | Lifeâ€cycle performance of natural gas power plants with preâ€combustion CO <sub>2</sub> capture. ,<br>2015, 5, 268-276.                                                                                                                            |      | 14        |
| 71 | Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe.<br>Resources, 2015, 4, 398-411.                                                                                                                        | 3.5  | 45        |
| 72 | Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA<br>Method for Energy Policy Making. Scientific World Journal, The, 2015, 2015, 1-10.                                                                | 2.1  | 47        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environmental Science<br>& Technology, 2015, 49, 5195-5202.                                                                                                         | 10.0 | 177       |
| 74 | Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 2015, 40, 16660-16672.                                                          | 7.1  | 26        |
| 75 | Life cycle assessment and data envelopment analysis approach for the selection of building<br>components according to their environmental impact efficiency: a case study for external walls.<br>Journal of Cleaner Production, 2015, 87, 707-716. | 9.3  | 57        |
| 76 | On the environmental suitability of high- and low-enthalpy geothermal systems. Geothermics, 2015, 53, 27-37.                                                                                                                                       | 3.4  | 65        |
| 77 | Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading.<br>Fuel, 2015, 139, 441-456.                                                                                                                     | 6.4  | 114       |
| 78 | On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy. Energy, 2014, 67, 527-537.                                                                       | 8.8  | 78        |
| 79 | Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production, 2014, 69, 165-175.                                                                                          | 9.3  | 137       |
| 80 | Carbon Footprint as a Single Indicator in Energy Systems: The Case of BiofuelsÂand CO2 Capture<br>Technologies. Ecoproduction, 2014, , 81-104.                                                                                                     | 0.8  | 0         |
| 81 | Environmental benchmarking of wind farms according to their operational performance. Energy, 2013, 61, 589-597.                                                                                                                                    | 8.8  | 57        |
| 82 | Life-cycle assessment of Fischer–Tropsch products from biosyngas. Renewable Energy, 2013, 59, 229-236.                                                                                                                                             | 8.9  | 36        |
| 83 | Life-cycle performance of indirect biomass gasification as a green alternative to steam methane<br>reforming for hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 9961-9972.                                               | 7.1  | 117       |
| 84 | Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery. Energy, 2013, 50, 477-485.                                                                                           | 8.8  | 54        |
| 85 | Is Labor a Suitable Input in LCA + DEA Studies? Insights on the Combined Use of Economic,<br>Environmental and Social Parameters. Social Sciences, 2013, 2, 114-130.                                                                               | 1.4  | 21        |
| 86 | On the feasibility of producing hydrogen with net carbon fixation by the decomposition of vegetable and microalgal oils. Energy and Environmental Science, 2012, 5, 6126.                                                                          | 30.8 | 26        |
| 87 | Preliminary assessment of plastic waste valorization via sequential pyrolysis and catalytic reforming.<br>Journal of Material Cycles and Waste Management, 2012, 14, 301-307.                                                                      | 3.0  | 22        |
| 88 | Potential environmental effects of probiotics used in aquaculture. Aquaculture International, 2012, 20, 779-789.                                                                                                                                   | 2.2  | 32        |
| 89 | Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel, 2012, 97, 812-821.                                                                                                                                                     | 6.4  | 172       |
| 90 | Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation. Applied Energy, 2012, 95, 111-122.                                                                            | 10.1 | 101       |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renewable Energy, 2012, 38, 155-162.                                                                          | 8.9  | 106       |
| 92  | Joint life cycle assessment and data envelopment analysis of grape production for vinification in the<br>RÃas Baixas appellation (NW Spain). Journal of Cleaner Production, 2012, 27, 92-102. | 9.3  | 172       |
| 93  | Computation of Operational and Environmental Benchmarks Within Selected Galician Fishing Fleets.<br>Journal of Industrial Ecology, 2011, 15, 776-795.                                         | 5.5  | 47        |
| 94  | Updating the carbon footprint of the Galician fishing activity (NW Spain). Science of the Total Environment, 2011, 409, 1609-1611.                                                            | 8.0  | 32        |
| 95  | Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Science of the Total Environment, 2011, 409, 1786-1798.                                | 8.0  | 154       |
| 96  | Further potentials in the joint implementation of life cycle assessment and data envelopment analysis.<br>Science of the Total Environment, 2010, 408, 5265-5272.                             | 8.0  | 103       |
| 97  | Estimation of the carbon footprint of the Galician fishing activity (NW Spain). Science of the Total<br>Environment, 2010, 408, 5284-5294.                                                    | 8.0  | 71        |
| 98  | Implementing by-product management into the Life Cycle Assessment of the mussel sector. Resources,<br>Conservation and Recycling, 2010, 54, 1219-1230.                                        | 10.8 | 51        |
| 99  | Environmental impact efficiency in mussel cultivation. Resources, Conservation and Recycling, 2010, 54, 1269-1277.                                                                            | 10.8 | 77        |
| 100 | Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain).<br>Resources, Conservation and Recycling, 2010, 55, 106-117.                               | 10.8 | 66        |
| 101 | Revisiting the Life Cycle Assessment of mussels from a sectorial perspective. Journal of Cleaner<br>Production, 2010, 18, 101-111.                                                            | 9.3  | 70        |
| 102 | Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers. Environmental Science and Policy, 2010, 13, 509-521.       | 4.9  | 72        |
| 103 | The link between operational efficiency and environmental impacts. Science of the Total Environment, 2009, 407, 1744-1754.                                                                    | 8.0  | 143       |
| 104 | Enhancing the Economic Dimension of LCA + DEA Studies for Sustainability Assessment. , 0, , .                                                                                                 |      | 1         |

Enhancing the Economic Dimension of LCA + DEA Studies for Sustainability Assessment. , 0, , . 104