Silvia Paracchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363236/publications.pdf

Version: 2024-02-01

62 papers

4,119 citations

32 h-index 61 g-index

84 all docs

84 docs citations

84 times ranked 3582 citing authors

#	Article	IF	CITATIONS
1	The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 2006, 15, 1659-1666.	2.9	240
2	Human handedness: A meta-analysis Psychological Bulletin, 2020, 146, 481-524.	6.1	226
3	A 77-Kilobase Region of Chromosome 6p22.2 Is Associated with Dyslexia in Families From the United Kingdom and From the United States. American Journal of Human Genetics, 2004, 75, 1046-1058.	6.2	222
4	Investigation of Dyslexia and SLI Risk Variants in Reading- and Language-Impaired Subjects. Behavior Genetics, 2011, 41, 90-104.	2.1	200
5	A Large AZFc Deletion Removes DAZ3/DAZ4 and Nearby Genes from Men in Y Haplogroup N. American Journal of Human Genetics, 2004, 74, 180-187.	6.2	176
6	A Predominantly Neolithic Origin for Y-Chromosomal DNA Variation in North Africa. American Journal of Human Genetics, 2004, 75, 338-345.	6.2	173
7	CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment. American Journal of Human Genetics, 2009, 85, 264-272.	6.2	173
8	DCDC2, KIAA0319 and CMIP Are Associated with Reading-Related Traits. Biological Psychiatry, 2011, 70, 237-245.	1.3	156
9	Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 2006, 11, 1085-1091.	7.9	140
10	The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 2014, 20, 83-90.	6.7	135
11	The Genetic Lexicon of Dyslexia. Annual Review of Genomics and Human Genetics, 2007, 8, 57-79.	6.2	131
12	Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia. Biological Psychiatry, 2010, 68, 320-328.	1.3	131
13	Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill. PLoS Genetics, 2013, 9, e1003751.	3.5	129
14	Haplotype-specific expression of exon 10 at the human MAPT locus. Human Molecular Genetics, 2006, 15, 3529-3537.	2.9	122
15	Association of the <i>KIAA0319 </i> Dyslexia Susceptibility Gene With Reading Skills in the General Population. American Journal of Psychiatry, 2008, 165, 1576-1584.	7.2	120
16	PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics, 2011, 20, 608-614.	2.9	119
17	Genomeâ€wide screening for <scp>DNA</scp> variants associated with reading and language traits. Genes, Brain and Behavior, 2014, 13, 686-701.	2.2	112
18	A Common Variant Associated with Dyslexia Reduces Expression of the KIAA0319 Gene. PLoS Genetics, 2009, 5, e1000436.	3.5	92

#	Article	IF	CITATIONS
19	Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 2004, 41, 853-857.	3.2	91
20	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	4.8	82
21	Genomeâ€wide association analyses of child genotype effects and parentâ€ofâ€origin effects in specific language impairment. Genes, Brain and Behavior, 2014, 13, 418-429.	2.2	76
22	Hierarchical high-throughput SNP genotyping of the human Y chromosome using MALDI-TOF mass spectrometry. Nucleic Acids Research, 2002, 30, 27e-27.	14.5	61
23	Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes. Journal of Neurodevelopmental Disorders, 2016, 8, 24.	3.1	60
24	Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 2014, 22, 675-680.	2.8	59
25	The dyslexia-associated gene KIAA0319 encodes highly N- and O-glycosylated plasma membrane and secreted isoforms. Human Molecular Genetics, 2008, 17, 859-871.	2.9	56
26	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	7.9	56
27	Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain and Behavior, 2011, 10, 158-165.	2.2	48
28	The neuronal migration hypothesis of dyslexia: A critical evaluation 30Âyears on. European Journal of Neuroscience, 2018, 48, 3212-3233.	2.6	48
29	Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia. Developmental Medicine and Child Neurology, 2014, 56, 346-353.	2.1	42
30	Reading and Language Disorders: The Importance of Both Quantity and Quality. Genes, 2014, 5, 285-309.	2.4	41
31	The Dyslexia Candidate Locus on 2p12 Is Associated with General Cognitive Ability and White Matter Structure. PLoS ONE, 2012, 7, e50321.	2.5	41
32	Insights into Dyslexia Genetics Research from the Last Two Decades. Brain Sciences, 2022, 12, 27.	2.3	39
33	Identification of Candidate Genes for Dyslexia Susceptibility on Chromosome 18. PLoS ONE, 2010, 5, e13712.	2.5	36
34	Four meta-analyses across 164 studies on atypical footedness prevalence and its relation to handedness. Scientific Reports, 2020, 10, 14501.	3.3	36
35	Y-chromosomal DNA haplotypes in infertile European males carrying Y-microdeletions. Journal of Endocrinological Investigation, 2000, 23, 671-676.	3.3	32
36	Alternative splicing in the dyslexia-associated gene KIAA0319. Mammalian Genome, 2007, 18, 627-634.	2.2	30

3

#	Article	IF	CITATIONS
37	Y-chromosomal insights into the genetic impact of the caste system in India. Human Genetics, 2007, 121, 137-144.	3.8	30
38	A Y chromosomal influence on prostate cancer risk: the multi-ethnic cohort study. Journal of Medical Genetics, 2003, 40, 815-819.	3.2	26
39	Dissection of genetic associations with language-related traits in population-based cohorts. Journal of Neurodevelopmental Disorders, 2011, 3, 365-373.	3.1	26
40	Copy Number Variation Screen Identifies a Rare De Novo Deletion at Chromosome 15q13.1-13.3 in a Child with Language Impairment. PLoS ONE, 2015, 10, e0134997.	2.5	22
41	Lack of replication for the myosinâ€ <scp>18B</scp> association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 2015, 14, 369-376.	2.2	21
42	Different laterality indexes are poorly correlated with one another but consistently show the tendency of males and females to be more left- and right-lateralized, respectively. Royal Society Open Science, 2020, 7, 191700.	2.4	19
43	A New Model Organism for Studying the Catabolism of Pyrimidines and Purines. Advances in Experimental Medicine and Biology, 1998, 431, 475-479.	1.6	18
44	The DCDC2 deletion is not a risk factor for dyslexia. Translational Psychiatry, 2017, 7, e1182-e1182.	4.8	16
45	A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism. FASEB Journal, 2019, 33, 11284-11302.	0.5	15
46	Recent Advances in Handedness Genetics. Symmetry, 2021, 13, 1792.	2.2	13
47	The handedness-associated <i>PCSK6</i> locus spans an intronic promoter regulating novel transcripts. Human Molecular Genetics, 2016, 25, 1771-1779.	2.9	11
48	Relationship between Y-chromosomal DNA haplotype and sperm count in Italy. Journal of Endocrinological Investigation, 2002, 25, 993-995.	3.3	10
49	Genetics of Human Handedness and Laterality. Neuromethods, 2017, , 523-552.	0.3	10
50	The dyslexia susceptibility <i>KIAA0319</i> gene shows a specific expression pattern during zebrafish development supporting a role beyond neuronal migration. Journal of Comparative Neurology, 2019, 527, 2634-2643.	1.6	10
51	A rare missense variant in the $\langle i \rangle$ ATP2C2 $\langle i \rangle$ gene is associated with language impairment and related measures. Human Molecular Genetics, 2021, 30, 1160-1171.	2.9	10
52	Reply to Repping et al American Journal of Human Genetics, 2004, 75, 517-518.	6.2	8
53	Quantitative multidimensional phenotypes improve genetic analysis of laterality traits. Translational Psychiatry, 2022, 12, 68.	4.8	8
54	Prevalence and heritability of handedness in a Hong Kong Chinese twin and singleton sample. BMC Psychology, 2020, 8, 37.	2.1	7

#	Article	IF	CITATIONS
55	Handedness in twins: meta-analyses. BMC Psychology, 2022, 10, 11.	2.1	7
56	KIAA0319 influences cilia length, cell migration and mechanical cell–substrate interaction. Scientific Reports, 2022, 12, 722.	3.3	7
57	Genomeâ€wide association study and polygenic risk score analysis for hearing measures in children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 318-328.	1.7	6
58	Genomic Imprinting As a Window into Human Language Evolution. BioEssays, 2019, 41, 1800212.	2.5	5
59	Hand preference and Mathematical Learning Difficulties: New data from Greece, the United Kingdom, and Germany and two meta-analyses of the literature. Laterality, 2021, 26, 485-538.	1.0	5
60	Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Scientific Reports, 2022, 12, .	3.3	4
61	An Allele-specific Gene Expression Assay to Test the Functional Basis of Genetic Associations. Journal of Visualized Experiments, 2010, , .	0.3	2
62	SA14THE KIAAO319 DYSLEXIA SUSCEPTIBILITY GENE PRESENTS A HIGHLY SPECIFIC EXPRESSION PATTERN DURING ZEBRAFISH DEVELOPMENT AND PLAYS A ROLE IN CYTOSKELETON DYNAMICS. European Neuropsychopharmacology, 2019, 29, S1195.	0.7	0