List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elastodynamic problem on tensor random fields with fractal and Hurst effects. Meccanica, 2022, 57, 957-970.	2.0	5
2	Unifying compactly supported and Matérn covariance functions in spatial statistics. Journal of Multivariate Analysis, 2022, 189, 104949.	1.0	13
3	Parametric nonstationary covariance functions on spheres. Stat, 2022, 11, .	0.4	3
4	Criteria and characterizations for spatially isotropic and temporally symmetric matrix-valued covariance functions. Computational and Applied Mathematics, 2022, 41, .	2.2	2
5	Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 2022, 516, 126487.	1.0	2
6	Nonparametric Bayesian modelling of longitudinally integrated covariance functions on spheres. Computational Statistics and Data Analysis, 2022, , 107555.	1.2	0
7	30 Years of space–time covariance functions. Wiley Interdisciplinary Reviews: Computational Statistics, 2021, 13, e1512.	3.9	47
8	Multivariate isotropic random fields on spheres: Nonparametric Bayesian modeling and Lp fast approximations. Electronic Journal of Statistics, 2021, 15, .	0.7	1
9	Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces. Test, 2021, 30, 836-860.	1.1	7
10	On streamwise velocity spectra models with fractal and long-memory effects. Physics of Fluids, 2021, 33, 035116.	4.0	12
11	The F-family of covariance functions: A Matérn analogue for modeling random fields on spheres. Spatial Statistics, 2021, 43, 100512.	1.9	5
12	Advancing Spaceâ€Time Simulation of Random Fields: From Storms to Cyclones and Beyond. Water Resources Research, 2021, 57, e2020WR029466.	4.2	16
13	Nonparametric Bayesian Modeling and Estimation of Spatial Correlation Functions for Global Data. Bayesian Analysis, 2021, 16, .	3.0	2
14	Fast and exact simulation of Gaussian random fields defined on the sphere cross time. Statistics and Computing, 2020, 30, 187-194.	1.5	9
15	Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres. Statistics and Probability Letters, 2020, 156, 108618.	0.7	5
16	Zastavnyi operators and positive definite radial functions. Statistics and Probability Letters, 2020, 157, 108620.	0.7	6
17	Strict positive definiteness under axial symmetry on the sphere. Stochastic Environmental Research and Risk Assessment, 2020, 34, 723-732.	4.0	5
18	Discussion on A highâ€resolution bilevel skew―t stochastic generator for assessing Saudi Arabia's wind energy resources. Environmetrics, 2020, 31, e2651.	1.4	1

#	Article	IF	CITATIONS
19	Spaceâ€time autoregressive estimation and prediction with missing data based on Kalman filtering. Environmetrics, 2020, 31, e2627.	1.4	5
20	Regularity, continuity and approximation of isotropic Gaussian random fields on compact two-point homogeneous spaces. Stochastic Processes and Their Applications, 2020, 130, 4873-4891.	0.9	12
21	Families of covariance functions for bivariate random fields on spheres. Spatial Statistics, 2020, 40, 100448.	1.9	8
22	Reduction problems and deformation approaches to nonstationary covariance functions over spheres. Electronic Journal of Statistics, 2020, 14, .	0.7	5
23	Stein hypothesis and screening effect for covariances with compact support. Electronic Journal of Statistics, 2020, 14, .	0.7	2
24	Gneiting Class, Semi-Metric Spaces and Isometric Embeddings. Constructive Mathematical Analysis, 2020, 3, 85-95.	0.7	7
25	A turning bands method for simulating isotropic Gaussian random fields on the sphere. Statistics and Probability Letters, 2019, 144, 9-15.	0.7	10
26	Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1659-1667.	4.0	20
27	Covariance functions for multivariate Gaussian fields evolving temporally over planet earth. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1593-1608.	4.0	26
28	Axially symmetric models for global data: A journey between geostatistics and stochastic generators. Environmetrics, 2019, 30, e2555.	1.4	14
29	Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics. Annals of Statistics, 2019, 47, .	2.6	48
30	A semiparametric class of axially symmetric random fields on the sphere. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1863-1874.	4.0	12
31	Nonseparable covariance models on circles cross time: A study of Mexico City ozone. Environmetrics, 2019, 30, e2558.	1.4	13
32	Covariance functions on spheres cross time: Beyond spatial isotropy and temporal stationarity. Statistics and Probability Letters, 2019, 151, 1-7.	0.7	7
33	Z-estimators and auxiliary information for strong mixing processes. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1-11.	4.0	2
34	Regularity properties and simulations of Gaussian random fields on the sphere cross time. Electronic Journal of Statistics, 2018, 12, .	0.7	17
35	Asymmetric matrix-valued covariances for multivariate random fields on spheres. Journal of Statistical Computation and Simulation, 2018, 88, 1850-1862.	1.2	7
36	Strictly positive definite multivariate covariance functions on spheres. Journal of Multivariate Analysis, 2018, 166, 150-159.	1.0	12

#	Article	IF	CITATIONS
37	Fast and Exact Simulation of Complex-Valued Stationary Gaussian Processes Through Embedding Circulant Matrix. Journal of Computational and Graphical Statistics, 2018, 27, 278-290.	1.7	10
38	Determinantal point process models on the sphere. Bernoulli, 2018, 24, .	1.3	23
39	The Shkarofskyâ€Gneiting class of covariance models for bivariate Gaussian random fields. Stat, 2018, 7, e207.	0.4	4
40	Schoenberg's theorem for real and complex Hilbert spheres revisited. Journal of Approximation Theory, 2018, 228, 58-78.	0.8	16
41	Equivalence and orthogonality of Gaussian measures on spheres. Journal of Multivariate Analysis, 2018, 167, 306-318.	1.0	11
42	Modeling Temporally Evolving and Spatially Globally Dependent Data. International Statistical Review, 2018, 86, 344-377.	1.9	61
43	Admissible nested covariance models over spheres cross time. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3053-3066.	4.0	14
44	Random Fields with Fractal and Hurst Effects in Mechanics. , 2018, , 1-9.		1
45	From Schoenberg Coefficients to Schoenberg Functions. Constructive Approximation, 2017, 45, 217-241.	3.0	61
46	The dimple problem related to space–time modeling under the Lagrangian framework. Journal of Multivariate Analysis, 2017, 162, 110-121.	1.0	13
47	Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere. Spatial Statistics, 2017, 22, 388-402.	1.9	12
48	Contours and dimple for the Gneiting class of space-time correlation functions. Biometrika, 2017, 104, 995-1001.	2.4	8
49	Composite Likelihood Inference for Multivariate Gaussian Random Fields. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21, 448-469.	1.4	11
50	Lamb's problem on random mass density fields with fractal and Hurst effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160638.	2.1	11
51	Likelihood-based inference for multivariate space-time wrapped-Gaussian fields. Journal of Statistical Computation and Simulation, 2016, 86, 2583-2597.	1.2	5
52	A flexible class of non-separable cross-covariance functions for multivariate space–time data. Spatial Statistics, 2016, 18, 125-146.	1.9	29
53	Covariance tapering for multivariate Gaussian random fields estimation. Statistical Methods and Applications, 2016, 25, 21-37.	1.2	19
54	Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere. Journal of the American Statistical Association, 2016, 111, 888-898.	3.1	115

#	Article	IF	CITATIONS
55	On the Flexibility of Multivariate Covariance Models: Comment on the Paper by Genton and Kleiber. Statistical Science, 2015, 30, .	2.8	20
56	Responses of first-order dynamical systems to Matérn, Cauchy, and Dagum excitations. Mathematics and Mechanics of Complex Systems, 2015, 3, 27-41.	0.9	8
57	Elastic Rods and Shear Beams with Random Field Properties under Random Field Loads: Fractal and Hurst Effects. Journal of Engineering Mechanics - ASCE, 2015, 141, .	2.9	13
58	Harmonic oscillator driven by random processes having fractal and Hurst effects. Acta Mechanica, 2015, 226, 3653-3672.	2.1	13
59	Multivariate and multiradial Schoenberg measures with their dimension walks. Journal of Multivariate Analysis, 2015, 133, 251-265.	1.0	12
60	Classes of compactly supported covariance functions for multivariate random fields. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1249-1263.	4.0	45
61	Nonstationary matrix covariances: compact support, long range dependence and quasi-arithmetic constructions. Stochastic Environmental Research and Risk Assessment, 2015, 29, 193-204.	4.0	19
62	Dimension walks and Schoenberg spectral measures. Proceedings of the American Mathematical Society, 2014, 142, 1813-1824.	0.8	35
63	Bernoulli–Euler beams with random field properties under random field loads: fractal and Hurst effects. Archive of Applied Mechanics, 2014, 84, 1595-1626.	2.2	19
64	Multivariate Spartan spatial random field models. Probabilistic Engineering Mechanics, 2014, 37, 84-92.	2.7	12
65	Radial basis functions with compact support for multivariate geostatistics. Stochastic Environmental Research and Risk Assessment, 2013, 27, 909-922.	4.0	37
66	On Some Local, Global and Regularity Behaviour of Some Classes of Covariance Functions. Lecture Notes in Statistics, 2012, , 221-238.	0.2	11
67	Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach. Journal of the American Statistical Association, 2012, 107, 268-280.	3.1	113
68	From Schoenberg to Pick–Nevanlinna: Toward a complete picture of the variogram class. Bernoulli, 2011, 17, .	1.3	29
69	Characterization theorems for the Gneiting class of space–time covariances. Bernoulli, 2011, 17, .	1.3	32
70	Characterization theorems for some classes of covariance functions associated to vector valued random fields. Journal of Multivariate Analysis, 2011, 102, 1293-1301.	1.0	38
71	Features detection in spatial point processes via multivariate techniques. Environmetrics, 2010, 21, 400-414.	1.4	9
72	Mortality risk assessment through stationary space–time covariance functions. Stochastic Environmental Research and Risk Assessment, 2010, 24, 519-526.	4.0	8

#	Article	IF	CITATIONS
73	On the non-reducibility of non-stationary correlation functions to stationary ones under a class of mean-operator transformations. Stochastic Environmental Research and Risk Assessment, 2010, 24, 599-610.	4.0	7
74	Weighted composite likelihood-based tests for space-time separability of covariance functions. Statistics and Computing, 2010, 20, 283-293.	1.5	11
75	Spatio-temporal stochastic modelling: environmental and health processes. Environmetrics, 2010, 21, 221-223.	1.4	1
76	A Note on Continuous Spatial-Temporal Dynamics of Stochastic Processes. Communications in Statistics - Theory and Methods, 2010, 39, 3472-3484.	1.0	0
77	Quasi-arithmetic means of covariance functions with potential applications to space–time data. Journal of Multivariate Analysis, 2009, 100, 1830-1844.	1.0	52
78	Recent advances to model anisotropic space–time data. Statistical Methods and Applications, 2008, 17, 209-223.	1.2	27
79	On potentially negative space time covariances obtained as sum of products of marginal ones. Annals of the Institute of Statistical Mathematics, 2008, 60, 865-882.	0.8	35
80	New classes of covariance and spectral density functions for spatio-temporal modelling. Stochastic Environmental Research and Risk Assessment, 2008, 22, 65-79.	4.0	57
81	Detecting Features in Spatial Point Processes with Clutter via Local Indicators of Spatial Association. Journal of Computational and Graphical Statistics, 2007, 16, 968-990.	1.7	13
82	Geostatistical Analysis Through Spectral Techniques: Some Words of Caution. Communications in Statistics Part B: Simulation and Computation, 2007, 36, 1035-1051.	1.2	3
83	Mixture-based modeling for space–time data. Environmetrics, 2007, 18, 285-302.	1.4	19
84	Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece). Environmetrics, 2007, 18, 759-773.	1.4	10
85	A kernel-based method for nonparametric estimation of variograms. Statistica Neerlandica, 2007, 61, 173-197.	1.6	15
86	Covariance functions that are stationary or nonstationary in space and stationary in time. Statistica Neerlandica, 2007, 61, 358-382.	1.6	25
87	La descente et la montée étendues: the spatially d-anisotropic and the spatio-temporal case. Stochastic Environmental Research and Risk Assessment, 2007, 21, 683-693.	4.0	18
88	A note on decoupling of local and global behaviours for the Dagum Random Field. Probabilistic Engineering Mechanics, 2007, 22, 320-329.	2.7	28
89	Modelling spatio-temporal data: A new variogram and covariance structure proposal. Statistics and Probability Letters, 2007, 77, 83-89.	0.7	42
90	Nonseparable stationary anisotropic space–time covariance functions. Stochastic Environmental Research and Risk Assessment, 2006, 21, 113-122.	4.0	78

#	Article	IF	CITATIONS
91	Nonstationary space–time covariance functions induced by dynamical systems. Scandinavian Journal of Statistics, 0, , .	1.4	2
92	Random fields on the hypertorus: Covariance modeling and applications. Environmetrics, 0, , e2701.	1.4	3
93	A stochastic fractional Laplace equation driven by colored noise on bounded domain, and its covariance functional. Stochastic Models, 0, , 1-25.	0.5	0