Kevin Wiehe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362809/publications.pdf Version: 2024-02-01

KEVIN MIEHE

#	Article	IF	CITATIONS
1	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
2	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	9.7	125
3	Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Communications Biology, 2022, 5, 271.	4.4	14
4	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	6.4	23
5	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
6	Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. Journal of Virology, 2022, 96, e0027022.	3.4	1
7	Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Reports, 2022, 39, 111009.	6.4	74
8	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
9	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
10	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57
11	Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Frontiers in Immunology, 2021, 12, 678511.	4.8	11
12	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	12.6	318
13	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	4.7	2
14	Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations. Cell Reports, 2021, 36, 109561.	6.4	9
15	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
16	Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Advances in Radiation Oncology, 2021, 6, 100677.	1.2	9
17	Strategies for induction of HIVâ€1 envelopeâ€reactive broadly neutralizing antibodies. Journal of the International AIDS Society, 2021, 24, e25831.	3.0	19
18	Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 lgG1s. Frontiers in Immunology, 2021, 12, 787603.	4.8	1

Κένιν Wiehe

#	Article	IF	CITATIONS
19	Different adjuvanted pediatric HIV envelope vaccines induced distinct plasma antibody responses despite similar B cell receptor repertoires in infant rhesus macaques. PLoS ONE, 2021, 16, e0256885.	2.5	1
20	Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response. Cell Host and Microbe, 2020, 28, 572-585.e7.	11.0	87
21	Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. MBio, 2020, 11, .	4.1	25
22	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
23	Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nature Communications, 2020, 11, 520.	12.8	42
24	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
25	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
26	HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Scientific Reports, 2019, 9, 10165.	3.3	7
27	Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.	4.7	6
28	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
29	Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Frontiers in Immunology, 2019, 10, 332.	4.8	156
30	Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nature Communications, 2019, 10, 654.	12.8	34
31	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	12.6	118
32	HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nature Communications, 2018, 9, 1111.	12.8	30
33	V2-Directed Vaccine-like Antibodies from HIV-1 Infection Identify an Additional K169-Binding Light Chain Motif with Broad ADCC Activity. Cell Reports, 2018, 25, 3123-3135.e6.	6.4	23
34	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
35	Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host and Microbe, 2018, 23, 759-765.e6.	11.0	98
36	Genetic and structural analyses of affinity maturation in the humoral response to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 129-144.	6.0	17

Κένιν Wiehe

#	Article	IF	CITATIONS
37	Immunodominance of Antibody Recognition of the HIV Envelope V2 Region in Ig-Humanized Mice. Journal of Immunology, 2017, 198, 1047-1055.	0.8	7
38	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
39	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
40	Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. Journal of Virology, 2017, 91, .	3.4	5
41	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
42	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
43	HIV-1 Consensus Envelope-Induced Broadly Binding Antibodies. AIDS Research and Human Retroviruses, 2017, 33, 859-868.	1.1	18
44	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
45	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38
46	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
47	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
48	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	12.6	191
49	Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine, 2015, 2, 713-722.	6.1	13
50	Polyreactivity and Autoreactivity among HIV-1 Antibodies. Journal of Virology, 2015, 89, 784-798.	3.4	154
51	Reversion and T Cell Escape Mutations Compensate the Fitness Loss of a CD8+ T Cell Escape Mutant in Their Cognate Transmitted/Founder Virus. PLoS ONE, 2014, 9, e102734.	2.5	8
52	Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Frontiers in Immunology, 2014, 5, 170.	4.8	104
53	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
54	IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE, 2014, 9, e90725.	2.5	37

Κένιν Wiehe

#	Article	IF	CITATIONS
55	HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.	11.0	105
56	An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014, 124, 1835-1843.	8.2	93
57	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
58	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
59	ÂÂÂÂRapid Selection of HIV Envelopes that Bind to Neutralizing Antibody B Cell Lineage Members with Functional Improbable Mutations. SSRN Electronic Journal, 0, , .	0.4	1