
Wieland Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	A rare genotype of <i>Cryptococcus gattii</i> caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17258-17263.	7.1	698
3	Molecular Typing of IberoAmerican <i>Cryptococcus neoformans</i> Isolates. Emerging Infectious Diseases, 2003, 9, 189-195.	4.3	468
4	Consensus multi-locus sequence typing scheme for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> . Medical Mycology, 2009, 47, 561-570.	0.7	408
5	Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology (United Kingdom), 2001, 147, 891-907.	1.8	346
6	Cryptococcus gattii Infections. Clinical Microbiology Reviews, 2014, 27, 980-1024.	13.6	327
7	The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus, 2011, 2, 105-111.	3.8	320
8	Sequence-Based Identification of <i>Aspergillus, Fusarium</i> , and <i>Mucorales</i> Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here?. Journal of Clinical Microbiology, 2009, 47, 877-884.	3.9	299
9	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	2.9	274
10	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	3.0	272
11	International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 2015, 53, 313-337.	0.7	252
12	Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding?. IMA Fungus, 2020, 11, 14.	3.8	232
13	Survey of Simple Sequence Repeats in Completed Fungal Genomes. Molecular Biology and Evolution, 2005, 22, 639-649.	8.9	221
14	Molecular typing of global isolates ofCryptococcus neoformans var.neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA — a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis, 1999, 20, 1790-1799.	2.4	210
15	Scedosporium and Lomentospora: an updated overview of underrated opportunists. Medical Mycology, 2018, 56, S102-S125.	0.7	186
16	Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts. MBio, 2011, 2, e00342-10.	4.1	182
17	Not Just Little Adults: Candidemia Epidemiology, Molecular Characterization, and Antifungal Susceptibility in Neonatal and Pediatric Patients. Pediatrics, 2009, 123, 1360-1368.	2.1	171
18	Clinical Manifestations of Cryptococcus gattii Infection: Determinants of Neurological Sequelae and Death. Clinical Infectious Diseases, 2012, 55, 789-798.	5.8	171

#	Article	IF	CITATIONS
19	MycoBank gearing up for new horizons. IMA Fungus, 2013, 4, 371-379.	3.8	170
20	Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Diversity, 2014, 67, 1-10.	12.3	152
21	Genetic Diversity of the Cryptococcus Species Complex Suggests that Cryptococcus gattii Deserves to Have Varieties. PLoS ONE, 2009, 4, e5862.	2.5	144
22	Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. Journal of Basic Microbiology, 1993, 33, 413-425.	3.3	137
23	Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 455-462.	1.6	131
24	Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clinical Microbiology and Infection, 2015, 21, 490.e1-490.e10.	6.0	129
25	Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal. MBio, 2014, 5, e01464-14.	4.1	126
26	Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra. PLoS ONE, 2011, 6, e25712.	2.5	123
27	Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS ONE, 2013, 8, e71148.	2.5	122
28	Clonality and Recombination in Genetically Differentiated Subgroups of Cryptococcus gattii. Eukaryotic Cell, 2005, 4, 1403-1409.	3.4	117
29	Revision of <i>Trichoderma</i> sect. <i>Longibrachiatum</i> including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia, 1997, 89, 442-460.	1.9	116
30	A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Medical Mycology, 2002, 40, 333-357.	0.7	116
31	MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex. PLoS ONE, 2012, 7, e37566.	2.5	113
32	Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: Strain variation in <i>Cryptococcus neoformans</i> . Electrophoresis, 1995, 16, 1648-1656.	2.4	112
33	Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. International Journal of Environmental Research and Public Health, 2017, 14, 636.	2.6	109
34	The D1/D2 domain of the large-subunit rDNA of the yeast species is unusually polymorphic. FEMS Yeast Research, 2003, 4, 253-258.	2.3	107
35	Antifungal Therapy and Management of Complications of Cryptococcosis due to Cryptococcus gattii. Clinical Infectious Diseases, 2013, 57, 543-551.	5.8	106
36	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	2.9	105

#	Article	IF	CITATIONS
37	Molecular epidemiology of clinical and environmental isolates of theCryptococcus neoformansspecies complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia. FEMS Yeast Research, 2006, 6, 625-635.	2.3	104
38	Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Current Genetics, 1991, 19, 239-242.	1.7	103
39	The internal transcribed spacers and 5.8S rRNA gene show extensive diversity among isolates of the species complex. FEMS Yeast Research, 2004, 4, 377-388.	2.3	103
40	Population-based surveillance for scedosporiosis in Australia: epidemiology, disease manifestations and emergence of Scedosporium aurantiacum infection. Clinical Microbiology and Infection, 2009, 15, 689-693.	6.0	102
41	Fungal taxonomy and sequence-based nomenclature. Nature Microbiology, 2021, 6, 540-548.	13.3	101
42	Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. International Journal of Food Microbiology, 2003, 86, 61-78.	4.7	94
43	A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready?. Frontiers in Microbiology, 2019, 10, 2903.	3.5	94
44	Molecular typing of clinical and environmental isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Research, 2003, 3, 405-415.	2.3	93
45	Clinical associations and prevalence of <i>Scedosporium</i> spp. in Australian cystic fibrosis patients: identification of novel risk factors?. Medical Mycology, 2010, 48, S37-S44.	0.7	93
46	CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology, 2020, 21, 103.	8.8	91
47	The Trehalose Synthesis Pathway Is an Integral Part of the Virulence Composite for <i>Cryptococcus gattii</i> . Infection and Immunity, 2009, 77, 4584-4596.	2.2	88
48	Prevalence of the VNIc genotype of Cryptococcus neoformans in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Research, 2010, 10, 769-778.	2.3	87
49	<i>SEC14</i> is a specific requirement for secretion of phospholipase B1 and pathogenicity of <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2011, 80, 1088-1101.	2.5	87
50	Correlation of antifungal susceptibility and molecular type within the <i>Cryptococcus neoformans/C. gattii</i> species complex. Medical Mycology, 2012, 50, 328-332.	0.7	86
51	Clinical Signs, Imaging Features, Neuropathology, and Outcome in Cats and Dogs with Central Nervous System Cryptococcosis from California. Journal of Veterinary Internal Medicine, 2010, 24, 1427-1438.	1.6	84
52	Geographically Structured Populations of Cryptococcus neoformans Variety grubii in Asia Correlate with HIV Status and Show a Clonal Population Structure. PLoS ONE, 2013, 8, e72222.	2.5	83
53	Nosocomial Pneumocystis jirovecii Pneumonia: Lessons From a Cluster in Kidney Transplant Recipients. Transplantation, 2011, 92, 1327-1334.	1.0	82
54	Clinical features and epidemiology of cryptococcosis in cats and dogs in California: 93 cases (1988–2010). Journal of the American Veterinary Medical Association, 2011, 239, 357-369.	0.5	80

#	Article	IF	CITATIONS
55	Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management. Clinical Microbiology and Infection, 2009, 15, 662-669.	6.0	79
56	Species and Genotypic Diversities and Similarities of Pathogenic Yeasts Colonizing Women. Journal of Clinical Microbiology, 1999, 37, 3835-3843.	3.9	76
57	Molecular Typing of Australian <i>Scedosporium</i> Isolates Showing Genetic Variability and Numerous <i>S. aurantiacum</i> . Emerging Infectious Diseases, 2008, 14, 282-290.	4.3	74
58	Detection of Occult <i>Scedosporium</i> Species in Respiratory Tract Specimens from Patients with Cystic Fibrosis by Use of Selective Media. Journal of Clinical Microbiology, 2010, 48, 314-316.	3.9	74
59	Primary endemic Cryptococcosis gattii by molecular type VGII in the state of ParÃ _i , Brazil. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 813-818.	1.6	72
60	Clonality and α-a Recombination in the Australian Cryptococcus gattii VGII Population - An Emerging Outbreak in Australia. PLoS ONE, 2011, 6, e16936.	2.5	71
61	Abundance of Pseudallescheria/Scedosporium species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. Medical Mycology, 2010, 48, S70-S76.	0.7	69
62	DNA barcoding of fungi causing infections in humans and animals. Fungal Biology, 2016, 120, 125-136.	2.5	67
63	The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate. Current Genetics, 1992, 21, 27-30.	1.7	66
64	A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. MBio, 2019, 10, .	4.1	66
65	Commentaries: Name Changes in Medically Important Fungi and Their Implications for Clinical Practice. Journal of Clinical Microbiology, 2015, 53, 1056-1062.	3.9	65
66	Delimitation of Umbelopsis (Mucorales, Umbelopsidaceae fam. nov.) based on ITS sequence and RFLP data. Mycological Research, 2003, 107, 339-350.	2.5	64
67	Global VGIIa isolates are of comparable virulence to the major fatal Cryptococcus gattii Vancouver Island outbreak genotype. Clinical Microbiology and Infection, 2011, 17, 251-258.	6.0	60
68	Molecular mycology: DNA probes and applications of PCR technology. Medical Mycology, 1994, 32, 351-366.	0.7	59
69	Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the <i>Cryptococcus</i> species complex. Electrophoresis, 2008, 29, 3183-3191.	2.4	59
70	MLST-Based Population Genetic Analysis in a Global Context Reveals Clonality amongst Cryptococcus neoformans var. grubii VNI Isolates from HIV Patients in Southeastern Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0005223.	3.0	59
71	Revision of Trichoderma sect. Longibrachiatum Including Related Teleomorphs Based on Analysis of Ribosomal DNA Internal Transcribed Spacer Sequences. Mycologia, 1997, 89, 442.	1.9	58
72	Environmental distribution of <i>Cryptococcus neoformans</i> and <i>C. gattii</i> around the Mediterranean basin. FEMS Yeast Research, 2016, 16, fow045.	2.3	57

#	Article	IF	CITATIONS
73	PCR-Restriction Fragment Length Polymorphism Analysis of the Phospholipase B (PLB1) Gene for Subtyping of Cryptococcus neoformans Isolates. Applied and Environmental Microbiology, 2003, 69, 2080-2086.	3.1	56
74	Galleria mellonella Model Identifies Highly Virulent Strains among All Major Molecular Types of Cryptococcus gattii. PLoS ONE, 2014, 9, e105076.	2.5	56
75	Cryptococcus gattii Virulence Composite: Candidate Genes Revealed by Microarray Analysis of High and Less Virulent Vancouver Island Outbreak Strains. PLoS ONE, 2011, 6, e16076.	2.5	56
76	Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses. FEMS Yeast Research, 2008, 8, 651-659.	2.3	54
77	Molecular Epidemiology Reveals Genetic Diversity amongst Isolates of the Cryptococcus neoformans/C. gattii Species Complex in Thailand. PLoS Neglected Tropical Diseases, 2013, 7, e2297.	3.0	54
78	Molecular epidemiology ofCryptococcusneoformansisolates from AIDS patients of the Brazilian city, Rio de Janeiro. Medical Mycology, 2004, 42, 229-238.	0.7	53
79	Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0004885.	3.0	52
80	Retrospective Study of the Epidemiology and Clinical Manifestations of Cryptococcus gattii Infections in Colombia from 1997–2011. PLoS Neglected Tropical Diseases, 2014, 8, e3272.	3.0	51
81	Identification of pathogenic yeasts of the imperfect genusCandida by polymerase chain reaction fingerprinting. Electrophoresis, 1997, 18, 1548-1559.	2.4	49
82	Feline Cryptococcosis. Journal of Feline Medicine and Surgery, 2011, 13, 163-172.	1.6	49
83	Identification of Novel Hybrids Between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII. Mycopathologia, 2012, 173, 337-346.	3.1	49
84	MLST and Whole-Genome-Based Population Analysis of Cryptococcus gattii VGIII Links Clinical, Veterinary and Environmental Strains, and Reveals Divergent Serotype Specific Sub-populations and Distant Ancestors. PLoS Neglected Tropical Diseases, 2016, 10, e0004861.	3.0	49
85	Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of Trichoderma harzianum. Current Genetics, 1994, 26, 74-78.	1.7	44
86	Fundamental niche prediction of the pathogenic yeasts <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> in Europe. Environmental Microbiology, 2017, 19, 4318-4325.	3.8	44
87	Online Databases for Taxonomy and Identification of Pathogenic Fungi and Proposal for a Cloud-Based Dynamic Data Network Platform. Journal of Clinical Microbiology, 2017, 55, 1011-1024.	3.9	43
88	Clinical Significance and Phylogenetic Relationship of Novel Australian <i>Pneumocystis jirovecii</i> Genotypes. Journal of Clinical Microbiology, 2009, 47, 1818-1823.	3.9	42
89	Draft Genome Sequence of the Pathogenic Fungus Scedosporium apiospermum. Genome Announcements, 2014, 2, .	0.8	42
90	Environmental Isolation of Cryptococcus gattii VGII from Indoor Dust from Typical Wooden Houses in the Deep Amazonas of the Rio Negro Basin. PLoS ONE, 2015, 10, e0115866.	2.5	42

#	Article	IF	CITATIONS
91	Database establishment for the secondary fungal DNA barcode <i>translational elongation factor lî±</i> (<i>TEF1α</i>). Genome, 2019, 62, 160-169.	2.0	41
92	Genotypic analysis of clinical and environmental Cryptococcus neoformans isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. PLoS ONE, 2018, 13, e0193237.	2.5	41
93	Genotyping of <i>Scedosporium</i> species: a review of molecular approaches. Medical Mycology, 2009, 47, 406-414.	0.7	40
94	Antifungal Drug Susceptibility and Phylogenetic Diversity among Cryptococcus Isolates from Dogs and Cats in North America. Journal of Clinical Microbiology, 2014, 52, 2061-2070.	3.9	40
95	Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections. Frontiers in Microbiology, 2019, 10, 1647.	3.5	40
96	Development and Validation of a Multiplex PCR for Detection of Scedosporium spp. in Respiratory Tract Specimens from Patients with Cystic Fibrosis. Journal of Clinical Microbiology, 2011, 49, 1508-1512.	3.9	39
97	Identification of the Major Molecular Types of Cryptococcus neoformans and C. gattii by Hyperbranched Rolling Circle Amplification. PLoS ONE, 2014, 9, e94648.	2.5	39
98	Fatal Disseminated Cryptococcus gattii Infection in New Mexico. PLoS ONE, 2011, 6, e28625.	2.5	38
99	Fungal infections and treatment in cystic fibrosis. Current Opinion in Pulmonary Medicine, 2013, 19, 670-675.	2.6	38
100	Prevalence, geographic risk factor, and development of a standardized protocol for fungal isolation in cystic fibrosis: Results from the international prospective study "MFIP― Journal of Cystic Fibrosis, 2019, 18, 212-220.	0.7	38
101	Comparison of Different DNA-Based Methods for Molecular Typing of <i>Histoplasma capsulatum</i> . Applied and Environmental Microbiology, 2010, 76, 4438-4447.	3.1	37
102	Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genetics and Biology, 2019, 129, 16-29.	2.1	37
103	Scedosporium and Lomentospora Infections: Contemporary Microbiological Tools for the Diagnosis of Invasive Disease. Journal of Fungi (Basel, Switzerland), 2021, 7, 23.	3.5	37
104	Genotyping of MexicanCryptococcus neoformansandC. gattiiisolates by PCR-fingerprinting. Medical Mycology, 2009, 47, 713-721.	0.7	36
105	Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst <i>Cryptococcus</i> species obtained from Italian veterinary isolates. FEMS Yeast Research, 2014, 14, 897-909.	2.3	36
106	Multilocus microsatellite typing for <i>Cryptococcus neoformans</i> var. <i>grubii</i> . Medical Mycology, 2008, 46, 685-696.	0.7	35
107	Pathogenesis of Pulmonary Cryptococcus gattii Infection: A Rat Model. Mycopathologia, 2010, 170, 315-330.	3.1	34
108	Phenotypic Differences of Cryptococcus Molecular Types and Their Implications for Virulence in a Drosophila Model of Infection. Infection and Immunity, 2014, 82, 3058-3065.	2.2	33

#	Article	IF	CITATIONS
109	Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys, 2018, 28, 65-82.	1.9	33
110	Differentiation of Cryptococcus neoformans varieties and Cryptococcus gattii using CAP59-based loop-mediated isothermal DNA amplification. Clinical Microbiology and Infection, 2010, 16, 711-714.	6.0	32
111	Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro. Mycopathologia, 2018, 183, 251-261.	3.1	32
112	Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence. Journal of Fungi (Basel, Switzerland), 2020, 6, 130.	3.5	32
113	Taxonomy of medically important fungi in the molecular era. Lancet Infectious Diseases, The, 2013, 13, 385-386.	9.1	31
114	Whole Genome Sequencing of Australian Candida glabrata Isolates Reveals Genetic Diversity and Novel Sequence Types. Frontiers in Microbiology, 2018, 9, 2946.	3.5	31
115	Preliminary study of the oral mycobiome of children with and without dental caries. Journal of Oral Microbiology, 2019, 11, 1536182.	2.7	30
116	Scedosporium aurantiacumis as virulent asS. prolificans, and shows strain-specific virulence differences, in a mouse model. Medical Mycology, 2010, 48, S45-S51.	0.7	29
117	Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy, 2012, 14, 1119-1130.	0.7	29
118	Molecular diagnosis of Pneumocystis pneumonia in dogs. Medical Mycology, 2017, 55, 828-842.	0.7	28
119	Molecular detection of drug resistant malaria in Southern Thailand. Malaria Journal, 2019, 18, 275.	2.3	28
120	Long-read sequencing based clinical metagenomics for the detection and confirmation of Pneumocystis jirovecii directly from clinical specimens: A paradigm shift in mycological diagnostics. Medical Mycology, 2020, 58, 650-660.	0.7	28
121	Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Medical Mycology, 2018, 56, S42-S59.	0.7	27
122	Association between fertility and molecular sub-type of global isolates ofCryptococcus gattiimolecular type VGII. Medical Mycology, 2008, 46, 665-673.	0.7	26
123	Cryptococcus gattii Species Complex as an Opportunistic Pathogen: Underlying Medical Conditions Associated with the Infection. MBio, 2021, 12, e0270821.	4.1	25
124	Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than <i>Aspergillus</i> in the haematology/oncology setting, 2021. Internal Medicine Journal, 2021, 51, 177-219.	0.8	25
125	Isolation and characterisation of the phospholipase B gene ofCryptococcus neoformansvar.gattii. FEMS Yeast Research, 2002, 2, 551-561.	2.3	24
126	Fatal Mycotic Aneurysms Due to Scedosporium and Pseudallescheria Infection. Journal of Clinical Microbiology, 2011, 49, 2067-2071.	3.9	24

#	Article	IF	CITATIONS
127	Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies. Frontiers in Microbiology, 2017, 8, 1292.	3.5	24
128	Molecular identification and antifungal susceptibility profiles of clinical strains of Fonsecaea spp. isolated from patients with chromoblastomycosis in Rio de Janeiro, Brazil. PLoS Neglected Tropical Diseases, 2018, 12, e0006675.	3.0	23
129	Phenotypic Profiling of Scedosporium aurantiacum, an Opportunistic Pathogen Colonizing Human Lungs. PLoS ONE, 2015, 10, e0122354.	2.5	22
130	Draft Genome of Australian Environmental Strain WM 09.24 of the Opportunistic Human Pathogen Scedosporium aurantiacum. Genome Announcements, 2015, 3, .	0.8	21
131	Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients. Mycopathologia, 2018, 183, 89-100.	3.1	21
132	Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest. MSphere, 2018, 3, .	2.9	20
133	NGS barcode sequencing in taxonomy and diagnostics, an application in "Candida―pathogenic yeasts with a metagenomic perspective. IMA Fungus, 2018, 9, 91-105.	3.8	20
134	Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities – a proof of concept under laboratory conditions. IMA Fungus, 2019, 10, 12.	3.8	20
135	Cryptococcus neoformans and Cryptococcus gattii Species Complexes in Latin America: A Map of Molecular Types, Genotypic Diversity, and Antifungal Susceptibility as Reported by the Latin American Cryptococcal Study Group. Journal of Fungi (Basel, Switzerland), 2021, 7, 282.	3.5	20
136	Exploring ecological modelling to investigate factors governing the colonization success in nosocomial environment of Candida albicans and other pathogenic yeasts. Scientific Reports, 2016, 6, 26860.	3.3	19
137	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
138	Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells. Cytotherapy, 2016, 18, 65-79.	0.7	18
139	Flucytosine resistance in <i>Cryptococcus gattii</i> is indirectly mediated by the FCY2-FCY1-FUR1 pathway. Medical Mycology, 2018, 56, 857-867.	0.7	18
140	Recrudescent cryptococcosis, caused byCryptococcus gattii(molecular type VGII),over a 13-year period in a Birman cat. Medical Mycology, 2006, 44, 561-566.	0.7	17
141	Molecular Epidemiology Linking Multihospital Clusters of Opportunistic Pneumocystis jirovecii Pneumonia. Clinical Infectious Diseases, 2013, 57, 1058-1059.	5.8	17
142	Development of polymorphic microsatellite markers for <i>Cryptococcus neoformans</i> . Molecular Ecology Resources, 2008, 8, 1136-1138.	4.8	16
143	Cryptococcus gattii in the Age of Whole-Genome Sequencing. MBio, 2015, 6, e01761-15.	4.1	16
144	Fatal Case of Polymicrobial Meningitis Caused by Cryptococcus liquefaciens and Mycobacterium tuberculosis Complex in a Human Immunodeficiency Virus-Infected Patient. Journal of Clinical Microbiology, 2015, 53, 2753-2755.	3.9	16

#	Article	IF	CITATIONS
145	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
146	Isolation ofCryptococcus neoformansvar.neoformansserotype D from Eucalypts in South Brazil. Medical Mycology, 2006, 44, 707-713.	0.7	15
147	Pathogenic diversity amongst serotype C VGIII and VGIV Cryptococcus gattii isolates. Scientific Reports, 2015, 5, 11717.	3.3	15
148	A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. International Journal for Parasitology, 2019, 49, 555-567.	3.1	15
149	Prevalence of cryptococcal antigenemia and nasal colonization in a free-ranging koala population. Medical Mycology, 2019, 57, 848-857.	0.7	15
150	Umbelopsis dimorpha sp. nov., a link between U. vinacea and U. versiformis. Mycological Research, 2004, 108, 107-111.	2.5	14
151	Molecular Epidemiology of Invasive Aspergillosis: Lessons Learned from an Outbreak Investigation in an Australian Hematology Unit. Infection Control and Hospital Epidemiology, 2009, 30, 1223-1226.	1.8	14
152	Detection ofLeishmania donovaniin peripheral blood of asymptomatic individuals in contact with patients with visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 286-293.	1.8	14
153	Genetic differences in Chlamydia pecorum between neighbouring sub-populations of koalas (Phascolarctos cinereus). Veterinary Microbiology, 2019, 231, 264-270.	1.9	14
154	Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010 to) Tj ETQq0 0 C) rgBT /Ove 2.5	erlock 10 Tf 5
155	Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes. IMA Fungus, 2021, 12, 18.	3.8	13
156	PRESHIPMENT TESTING SUCCESS: RESOLUTION OF A NASAL SINUS GRANULOMA IN A CAPTIVE KOALA (<i>PHASCOLARCTOS CINEREUS</i>) CAUSED BY <i>CRYPTOCOCCUS GATTII</i> . Journal of Zoo and Wildlife Medicine, 2012, 43, 939-942.	0.6	12
157	Genetic Heterogeneity of Australian Candida auris Isolates: Insights From a Nonoutbreak Setting Using Whole-Genome Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaa158.	0.9	12
158	Identification and Characterization of VNI/VNII and Novel VNII/VNIV Hybrids and Impact of Hybridization on Virulence and Antifungal Susceptibility Within the C. neoformans/C. gattii Species Complex. PLoS ONE, 2016, 11, e0163955.	2.5	12
159	Insights on the Genotype Distribution Among Cryptococcus neoformans and C. gattii Portuguese Clinical Isolates. Current Microbiology, 2014, 68, 199-203.	2.2	11
160	Interactions of an Emerging Fungal Pathogen Scedosporium aurantiacum with Human Lung Epithelial Cells. Scientific Reports, 2019, 9, 5035.	3.3	11
161	Cytokine patterns in a prospective cohort of HIV-infected patients with cryptococcal meningitis following initiation of antifungal and antiretroviral therapy. PLoS ONE, 2017, 12, e0176304.	2.5	11
162	Environmental Isolation of Sporothrix brasiliensis in an Area With Recurrent Feline Sporotrichosis Cases. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	11

#	Article	IF	CITATIONS
163	Clonal Dispersal of Cryptococcus gattii VGII in an Endemic Region of Cryptococcosis in Colombia. Journal of Fungi (Basel, Switzerland), 2019, 5, 32.	3.5	10
164	Veterinary Insights into Cryptococcosis Caused by <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> ., 0, , 489-504.		10
165	Recent Advances in Cryptococcus and Cryptococcosis. Microorganisms, 2022, 10, 13.	3.6	10
166	The Genus Scedosporium and Pseudallescheria: Current Challenges in Laboratory Diagnosis. Current Clinical Microbiology Reports, 2014, 1, 27-36.	3.4	9
167	Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance. Trends in Parasitology, 2018, 34, 322-334.	3.3	9
168	Cryptococcosis due to Cryptococcus gattii VGII in southeast Brazil: The One Health approach revealing a possible role for domestic cats. Medical Mycology Case Reports, 2019, 24, 61-64.	1.3	9
169	Aspergillus and Penicillium. , 0, , 2030-2056.		9
170	Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Frontiers in Microbiology, 2021, 12, 708550.	3.5	9
171	Identification of 14-α-Lanosterol Demethylase (CYP51) in Scedosporium Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	8
172	Jet-Setting Koalas Spread Cryptococcus gattii VGII in Australia. MSphere, 2019, 4, .	2.9	8
173	Indoor Dust as a Source of Virulent Strains of the Agents of Cryptococcosis in the Rio Negro Micro-Region of the Brazilian Amazon. Microorganisms, 2020, 8, 682.	3.6	8
174	Molecular Detection of Antimalarial Drug Resistance in Plasmodium vivax from Returned Travellers to NSW, Australia during 2008–2018. Pathogens, 2020, 9, 101.	2.8	8
175	Finding a Needle in a Haystack – In Silico Search for Environmental Traces of <i>Candida auris </i> . Japanese Journal of Infectious Diseases, 2022, 75, 490-495.	1.2	8
176	Preheating of urine improves the specificity of urinary cryptococcal antigen testing using the lateral flow assay. PLoS Neglected Tropical Diseases, 2017, 11, e0005304.	3.0	7
177	Cryptococcosis in the koala (Phascolarctos cinereus): pathogenesis and treatment in the context of two atypical cases. Medical Mycology, 2018, 56, 926-936.	0.7	7
178	The mycobiome of Australian tree hollows in relation to theCryptococcus gattiiandC.Âneoformansspecies complexes. Ecology and Evolution, 2019, 9, 9684-9700.	1.9	7
179	Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens, 2020, 9, 665.	2.8	7

180 Consensus Multilocus Sequence Typing Scheme for Pneumocystis jirovecii. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
181	Furthering the Continental Drift Speciation Hypothesis in the Pathogenic Cryptococcus Species Complexes. MSphere, 2017, 2, .	2.9	6
182	Molecular detection of <i>Pneumocystis</i> in the lungs of cats. Medical Mycology, 2019, 57, 813-824.	0.7	6
183	Identification of the environmental source of infection for a domestic ferret with cryptococcosis. Journal of Veterinary Diagnostic Investigation, 2019, 31, 828-835.	1.1	6
184	Identification of genomic differences betweenCryptococcus neoformansandCryptococcus gattiiby Representational Difference Analysis (RDA). Medical Mycology, 2009, 47, 584-591.	0.7	5
185	Growth and protease secretion of Scedosporium aurantiacum under conditions of hypoxia. Microbiological Research, 2018, 216, 23-29.	5.3	5
186	Genotype, Antifungal Susceptibility, and Virulence of Clinical South African Cryptococcus neoformans Strains from National Surveillance, 2005–2009. Journal of Fungi (Basel, Switzerland), 2021, 7, 338.	3.5	5
187	Host transmission dynamics of first- and third-stage <i>Angiostrongylus cantonensis</i> larvae in <i>Bullastra lessoni</i> . Parasitology, 2022, 149, 1034-1044.	1.5	5
188	MALDI-TOF MS for the identification of veterinary non-C. neoformans-C. gattii Cryptococcus spp. isolates from Italy. Medical Mycology, 2014, 52, 659-666.	0.7	4
189	Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. Fungal Biology Reviews, 2018, 32, 156-165.	4.7	4
190	Effect of peptidases secreted by the opportunistic pathogen Scedosporium aurantiacum on human epithelial cells. Canadian Journal of Microbiology, 2019, 65, 814-822.	1.7	4
191	New multilocus sequence typing primers to enable genotyping of AD hybrids within the Cryptococcus neoformans species complex. Medical Mycology, 2020, 58, 1005-1009.	0.7	4
192	A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Medical Mycology, 2002, 40, 333-357.	0.7	4
193	Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum. Frontiers in Cellular and Infection Microbiology, 2021, 11, 761596.	3.9	4
194	Determinación in vitro de la pareja sexual en aislamientos del complejo Cryptococcus neoformans. Biomedica, 2007, 27, 308.	0.7	3
195	Making Moulds Meet Information retrieval as a basis for understanding <i>Pseudallescheria</i> and <i>Scedosporium</i> . Mycoses, 2011, 54, 1-4.	4.0	3
196	Australia in the global picture of the molecular epidemiology of Cryptococcus gattii molecular type VGII. Microbiology Australia, 2015, 36, 67.	0.4	3
197	Multi-locus sequence typing as a tool to investigate environmental sources of infection for cryptococcosis in captive birds. Medical Mycology, 2019, 57, 653-657.	0.7	3
198	The Quest for a General and Reliable Fungal DNA Barcode. The Open Applied Informatics Journal, 2011, 5, 45-61.	1.0	3

#	Article	IF	CITATIONS
199	Clinical epidemiology and high genetic diversity amongst Cryptococcus spp. isolates infecting people living with HIV in Kinshasa, Democratic Republic of Congo. PLoS ONE, 2022, 17, e0267842.	2.5	3
200	Isolation and characterisation of the phospholipase B gene of var FEMS Yeast Research, 2002, 2, 551-561.	2.3	2
201	Current Status in Diagnosis of Scedosporium Infections: What Is the Impact of New Molecular Methods?. Current Fungal Infection Reports, 2014, 8, 220-226.	2.6	2
202	Colonisation with Pneumocystis jirovecii in Australian infants. Pathology, 2015, 47, 489-490.	0.6	2
203	The emergence of Cryptococcus gattii VGII as a super killer?. Microbiology Australia, 2007, 28, 70.	0.4	2
204	In depth search of the Sequence Read Archive database reveals global distribution of the emerging pathogenic fungus <i>Scedosporium aurantiacum</i> . Medical Mycology, 2022, 60, .	0.7	2
205	Inferring Species Compositions of Complex Fungal Communities from Long- and Short-Read Sequence Data. MBio, 2022, 13, e0244421.	4.1	2
206	A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas (Phascolarctos cinereus) in the Liverpool Plains, New South Wales. International Journal of Environmental Research and Public Health, 2022, 19, 4603.	2.6	2
207	In vitro mating of Colombian isolates of the Cryptococcus neoformans species complex. Biomedica, 2007, 27, 308-14.	0.7	2
208	Advances in the understanding of the Cryptococcus neoformans and C. gattii species complexes and cryptococcosis. Microbiology Australia, 2017, 38, 106.	0.4	1
209	Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients. , 2018, 183, 89.		1
210	Hospital-acquired Pneumocystis pneumonia: a renewed concern?. Microbiology Australia, 2014, 35, 57.	0.4	1
211	DNA barcoding of human and animal pathogenic fungi: the ISHAM-ITS database. Microbiology Australia, 2015, 36, 44.	0.4	1
212	<i>Pneumocystis jirovecii</i> genetic diversity in a Spanish tertiary hospital. Medical Mycology, 2021, 60, .	0.7	1
213	Molecular type distribution and fluconazole susceptibility of clinical Cryptococcus gattii isolates from South African laboratory-based surveillance, 2005–2013. PLoS Neglected Tropical Diseases, 2022, 16, e0010448.	3.0	1
214	Medical and veterinary mycology. Microbiology Australia, 2015, 36, 42.	0.4	0
215	The Westmead Medical Mycology Collection: basis for research and diagnosis of fungal diseases. Microbiology Australia, 2015, 36, 60.	0.4	0
216	Australian medical mycology culture collections: fundamental resources for mycological diagnosis and research. Microbiology Australia, 2019, 40, 130.	0.4	0