
Manoranjan Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of low and high viscous product on Kelvin–Helmholtz instability triggered by A+B→C type reaction. Physics of Fluids, 2022, 34, 012104.	4.0	6
2	Numerical study on topological change of viscous fingering induced by a phase separation with Korteweg force. Journal of Fluid Mechanics, 2022, 938, .	3.4	8
3	Nanoparticles impact on miscible viscous fingering with absorbing boundary condition at inlet. Physical Review Fluids, 2022, 7, .	2.5	1
4	Anomalous patterns of Saffman–Taylor fingering instability during a metastable phase separation. Physical Chemistry Chemical Physics, 2021, 23, 10926-10935.	2.8	6
5	Unstable miscible displacements in radial flow with chemical reactions. Journal of Fluid Mechanics, 2021, 917, .	3.4	11
6	Viscous fingering of miscible annular ring. Journal of Fluid Mechanics, 2021, 916, .	3.4	14
7	Effect of serum starvation on rheology of cell monolayers. Physics of Fluids, 2021, 33, 071908.	4.0	1
8	Reaction induced interfacial instability of miscible fluids in a channel. Journal of Fluid Mechanics, 2021, 925, .	3.4	5
9	Role of density gradients on miscible Rayleigh–Taylor fingers in porous media. AIP Advances, 2021, 11, .	1.3	2
10	Control of radial miscible viscous fingering. Journal of Fluid Mechanics, 2020, 884, .	3.4	29
11	Fluid Morphologies Governed by the Competition of Viscous Dissipation and Phase Separation in a Radial Hele-Shaw Flow. Coatings, 2020, 10, 960.	2.6	5
12	Interaction between rarefaction wave and viscous fingering in a Langmuir adsorbed solute. Physical Review E, 2020, 101, 033101.	2.1	0
13	Phase separation effects on a partially miscible viscous fingering dynamics. Journal of Fluid Mechanics, 2020, 898, .	3.4	17
14	Transient growth and symmetrizability in rectilinear miscible viscous fingering. Journal of Engineering Mathematics, 2020, 120, 111-128.	1.2	1
15	Experimental study of miscible viscous fingering with different effective interfacial tension. AIP Advances, 2020, 10, 115219.	1.3	12
16	Single diffusive magnetohydrodynamic pressure driven miscible displacement flows in a channel. Physics of Fluids, 2019, 31, 082102.	4.0	14
17	A numerical study on reaction-induced radial fingering instability. Journal of Fluid Mechanics, 2019, 862, 624-638.	3.4	24
18	A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines. Journal of Natural Gas Science and Engineering, 2019, 64, 107-117	4.4	60

MANORANJAN MISHRA

#	Article	IF	CITATIONS
19	Influence of Langmuir adsorption and viscous fingering on transport of finite size samples in porous media. Physical Review Fluids, 2019, 4, .	2.5	14
20	Boundary effects on the onset of miscible viscous fingering in a Hele-Shaw flow. Physical Review Fluids, 2019, 4, .	2.5	4
21	Fingering pattern induced by spinodal decomposition in hydrodynamically stable displacement in a partially miscible system. Physical Review Fluids, 2019, 4, .	2.5	13
22	Automated Framework for Water Looped Network Equilibrium. Water Resources Management, 2018, 32, 641-657.	3.9	3
23	Hydrogen embrittlement of steel pipelines during transients. Procedia Structural Integrity, 2018, 13, 210-217.	0.8	22
24	Effect of anti-Langmuir adsorption on spreading in porous media. Europhysics Letters, 2018, 124, 64003.	2.0	7
25	Non-modal stability analysis of miscible viscous fingering with non-monotonic viscosity profiles. Journal of Fluid Mechanics, 2018, 856, 552-579.	3.4	6
26	Interaction between shock layer and viscous fingering in a Langmuir adsorbed solute. Physics of Fluids, 2017, 29, 032108.	4.0	9
27	Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media. Fluids, 2017, 2, 32.	1.7	8
28	Coupled effect of viscosity and density gradients on fingering instabilities of a miscible slice in porous media. Physics of Fluids, 2016, 28, .	4.0	9
29	Fingering instability and mixing of a blob in porous media. Physical Review E, 2016, 94, 043106.	2.1	3
30	Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media. Journal of Fluid Mechanics, 2015, 780, 388-406.	3.4	13
31	Viscous fingering and deformation of a miscible circular blob in a rectilinear displacement in porous media. Journal of Fluid Mechanics, 2015, 782, .	3.4	12
32	Onset of fingering instability in a finite slice of adsorbed solute. Physical Review E, 2015, 92, 023013.	2.1	9
33	Nonmodal linear stability analysis of miscible viscous fingering in porous media. Physical Review E, 2015, 92, 053007.	2.1	14
34	Viscosity scaling of fingering instability in finite slices with Korteweg stress. Europhysics Letters, 2015, 109, 64001.	2.0	7
35	Effect of Strong Sample Solvent on the Solute Dynamics for More or Less Viscous Sample: A Comparative Study. Procedia IUTAM, 2015, 15, 249-255.	1.2	0
36	Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell. Physical Review E, 2015, 91, 033006.	2.1	35

MANORANJAN MISHRA

#	Article	IF	CITATIONS
37	Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chemical Engineering Science, 2015, 126, 10-21.	3.8	85
38	Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media. Chemical Engineering Science, 2015, 122, 523-532.	3.8	17
39	Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent. Journal of Chemical Physics, 2014, 141, 214701.	3.0	11
40	Combined influences of viscous fingering and solvent effect on the distribution of adsorbed solutes in porous media. RSC Advances, 2014, 4, 34369.	3.6	20
41	Comparison of Korteweg stresses effect on the fingering instability of higher or less viscous miscible slices: Linear stability analysis. Chemical Engineering Science, 2014, 110, 144-152.	3.8	11
42	Influence of a strong sample solvent on analyte dispersion in chromatographic columns. Journal of Chromatography A, 2013, 1297, 46-55.	3.7	17
43	Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media. Physics of Fluids, 2013, 25, .	4.0	38
44	Double diffusive effects on pressure-driven miscible displacement flows in a channel. Journal of Fluid Mechanics, 2012, 712, 579-597.	3.4	34
45	Influence of a simple magnetic bar on buoyancy-driven fingering of traveling autocatalytic reaction fronts. Physics of Fluids, 2012, 24, .	4.0	3
46	Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes. Chemical Engineering Science, 2010, 65, 2392-2398.	3.8	18
47	Influence of Double Diffusive Effects on Miscible Viscous Fingering. Physical Review Letters, 2010, 105, 204501.	7.8	74
48	Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Physics of Fluids, 2010, 22, .	4.0	29
49	Pulsating laminar fully developed channel and pipe flows. Physical Review E, 2010, 81, 016303.	2.1	21
50	Influence of miscible viscous fingering of finite slices on an adsorbed solute dynamics. Physics of Fluids, 2009, 21, .	4.0	22
51	Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Physical Review E, 2008, 78, 066306.	2.1	80
52	Peristaltic Flow of a Two-Layer System in a Poroflexible Tube. Journal of Porous Media, 2008, 11, 51-71.	1.9	3
53	Miscible viscous fingering with linear adsorption on the porous matrix. Physics of Fluids, 2007, 19, .	4.0	36
54	Destabilization of a Viscous Film Flowing Down in the Form of a Vertical Cylindrical Curtain. Physical Review Letters, 2006, 97, 184501.	7.8	5

4

#	Article	IF	CITATIONS
55	Peristaltic transport in a channel with a porous peripheral layer: model of a flow in gastrointestinal tract. Journal of Biomechanics, 2005, 38, 779-789.	2.1	38
56	Influence of Lateral Walls on Peristaltic Flow in a Rectangular Duct. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 824-827.	1.5	57
57	Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mechanica, 2004, 168, 35-59.	2.1	56
58	Peristaltic transport of a power-law fluid in a porous tube. Journal of Non-Newtonian Fluid Mechanics, 2004, 121, 163-174.	2.4	83
59	Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift Fur Angewandte Mathematik Und Physik, 2003, 54, 532-550.	1.4	218
60	Peristaltic pumping of a micropolar fluid in a tube. Acta Mechanica, 2003, 161, 165-178.	2.1	92