Sebastien Talbot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362209/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nanophotonics Enable Targeted Photothermal Silencing of Nociceptor Neurons. Small, 2022, 18, e2103364.	10.0	2
2	Promoting antigen escape from dendritic cell endosomes potentiates anti-tumoral immunity. Cell Reports Medicine, 2022, 3, 100534.	6.5	7
3	Anatomical differences in nociceptor neurons sensitivity. Bioelectronic Medicine, 2022, 8, 7.	2.3	2
4	LSD1 Inhibition Enhances the Immunogenicity of Mesenchymal Stromal Cells by Eliciting a dsRNA Stress Response. Cells, 2022, 11, 1816.	4.1	4
5	Analysis of Airway Vagal Neurons. Methods in Molecular Biology, 2022, , 297-314.	0.9	1
6	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	2.9	3
7	Epineural optogenetic activation of nociceptors initiates and amplifies inflammation. Nature Biotechnology, 2021, 39, 179-185.	17.5	54
8	Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. British Journal of Pharmacology, 2021, 178, 3905-3923.	5.4	19
9	FcεR1-expressing nociceptors trigger allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2021, 147, 2330-2342.	2.9	36
10	Nociceptor neurons promote IgE class switch in B cells. JCI Insight, 2021, 6, .	5.0	11
11	Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Reports Medicine, 2021, 2, 100455.	6.5	12
12	Neuro-Immunity Controls Obesity-Induced Pain. Frontiers in Human Neuroscience, 2020, 14, 181.	2.0	24
13	Vagal sensory neurons drive mucous cell metaplasia. Journal of Allergy and Clinical Immunology, 2020, 145, 1693-1696.e4.	2.9	17
14	A Novel Sulfonyl-Based Small Molecule Exhibiting Anti-cancer Properties. Frontiers in Pharmacology, 2020, 11, 237.	3.5	3
15	Profiling of how nociceptor neurons detect danger – new and old foes. Journal of Internal Medicine, 2019, 286, 268-289.	6.0	18
16	Downregulation of MHC Class II by Ubiquitination Is Required for the Migration of CD206+ Dendritic Cells to Skin-Draining Lymph Nodes. Journal of Immunology, 2019, 203, 2887-2898.	0.8	5
17	Oxidative Stress: Neuropathy, Excitability, and Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-2.	4.0	10
18	Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Frontiers in Neuroscience, 2019, 13, 25.	2.8	38

SEBASTIEN TALBOT

#	Article	IF	CITATIONS
19	Neurite Collapse and Altered ER Ca2+ Control in Human Parkinson Disease Patient iPSC-Derived Neurons with LRRK2 G2019S Mutation. Stem Cell Reports, 2019, 12, 29-41.	4.8	57
20	Endogenous T Cell Receptor Rearrangement Represses Aggressive Central Nervous System Autoimmunity in a TcR-Transgenic Model on the Non-Obese Diabetic Background. Frontiers in Immunology, 2019, 10, 3115.	4.8	5
21	Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. ELife, 2019, 8, .	6.0	26
22	The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, 563, 564-568.	27.8	174
23	Airway nociceptor neurons detect allergens after sensitization. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-4-29.	0.0	0
24	Substance P activates Mas-related G protein–coupled receptors to induce itch. Journal of Allergy and Clinical Immunology, 2017, 140, 447-453.e3.	2.9	131
25	Sense and Immunity: Context-Dependent Neuro-Immune Interplay. Frontiers in Immunology, 2017, 8, 1463.	4.8	53
26	Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight, 2016, 1, e89362.	5.0	125
27	Neuronal Circuits Modulate Antigen Flow Through Lymph Nodes. Bioelectronic Medicine, 2016, 3, 18-28.	2.3	23
28	Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats. Canadian Journal of Physiology and Pharmacology, 2016, 94, 752-757.	1.4	12
29	Neuroimmunity: Physiology and Pathology. Annual Review of Immunology, 2016, 34, 421-447.	21.8	159
30	Effects of Alpha-Lipoic Acid on Oxidative Stress and Kinin Receptor Expression in Obese Zucker Diabetic Fatty Rats. Journal of Diabetes & Metabolism, 2015, 06, 1-7.	0.2	44
31	GRPR/PI3KÎ ³ : Partners in Central Transmission of Itch. Journal of Neuroscience, 2015, 35, 16272-16281.	3.6	23
32	Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron, 2015, 87, 341-354.	8.1	299
33	CNS Injury: IL-33 Sounds the Alarm. Immunity, 2015, 42, 403-405.	14.3	19
34	Brain kinin B1 receptor contributes to the onset of stereotypic nocifensive behavior in rat. Behavioural Brain Research, 2013, 241, 17-26.	2.2	6
35	Kinin Receptors. , 2013, , 1519-1526.		1
36	Activation of kinin B1 receptor evokes hyperthermia through a vagal sensory mechanism in the rat. Journal of Neuroinflammation, 2012, 9, 214.	7.2	14

SEBASTIEN TALBOT

#	Article	IF	CITATIONS
37	Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia. Journal of Neuroinflammation, 2012, 9, 16.	7.2	40
38	Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Experimental Neurology, 2012, 234, 373-381.	4.1	34
39	An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase. Toxicology, 2012, 293, 125-131.	4.2	17
40	Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats. PLoS ONE, 2012, 7, e33864.	2.5	55
41	Cigarette smoke-induced kinin B1 receptor promotes NADPH oxidase activity in cultured human alveolar epithelial cells. Peptides, 2011, 32, 1447-1456.	2.4	24
42	Kinin B1 Receptor Enhances the Oxidative Stress in a Rat Model of Insulin Resistance: Outcome in Hypertension, Allodynia and Metabolic Complications. PLoS ONE, 2010, 5, e12622.	2.5	57
43	Key role for spinal dorsal horn microglial kinin B1receptor in early diabetic pain neuropathy. Journal of Neuroinflammation, 2010, 7, 36.	7.2	77
44	Mechanism of cigarette smoke-induced kinin B1 receptor expression in rat airways. Peptides, 2010, 31, 1940-1945.	2.4	30
45	Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin. Journal of Neuroinflammation, 2009, 6, 11.	7.2	29
46	Retinal plasma extravasation in streptozotocinâ€diabetic rats mediated by kinin B ₁ and B ₂ receptors. British Journal of Pharmacology, 2008, 154, 136-143.	5.4	56
47	Blockade of sensory abnormalities and kinin B1 receptor expression by N-Acetyl-I-Cysteine and ramipril in a rat model of insulin resistance. European Journal of Pharmacology, 2008, 589, 66-72.	3.5	44
48	Effects of Angiotensin-1 Converting Enzyme Inhibition on Oxidative Stress and Bradykinin Receptor Expression During Doxorubicin-induced Cardiomyopathy in Rats. Journal of Cardiovascular Pharmacology, 2008, 52, 278-285.	1.9	26