
Jürgen Scheller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361917/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 878-888.	4.1	2,433
2	IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells andÂDevelopment of Colitis-Associated Cancer. Cancer Cell, 2009, 15, 103-113.	16.8	1,851
3	Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. Journal of Clinical Investigation, 2011, 121, 3375-3383.	8.2	581
4	ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends in Immunology, 2011, 32, 380-387.	6.8	443
5	The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opinion on Therapeutic Targets, 2007, 11, 613-624.	3.4	314
6	Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine and Growth Factor Reviews, 2012, 23, 85-97.	7.2	311
7	Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. Journal of Experimental Medicine, 2010, 207, 1617-1624.	8.5	286
8	Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood, 2007, 110, 1748-1755.	1.4	281
9	The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. European Journal of Cell Biology, 2011, 90, 484-494.	3.6	248
10	Interleukin-6: From basic biology to selective blockade of pro-inflammatory activities. Seminars in Immunology, 2014, 26, 2-12.	5.6	246
11	Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. Blood, 2008, 111, 1021-1028.	1.4	228
12	Interleukin-6 and its receptor: from bench to bedside. Medical Microbiology and Immunology, 2006, 195, 173-183.	4.8	225
13	<i>Review:</i> IL-6 Transsignaling: The <i>In Vivo</i> Consequences. Journal of Interferon and Cytokine Research, 2005, 25, 241-253.	1.2	222
14	Cutting Edge: <i>Trans-</i> Signaling via the Soluble IL-6R Abrogates the Induction of FoxP3 in Naive CD4+CD25â^' T Cells. Journal of Immunology, 2007, 179, 2041-2045.	0.8	209
15	Essential Roles of IL-6 <i>Trans</i> -Signaling in Colonic Epithelial Cells, Induced by the IL-6/Soluble–IL-6 Receptor Derived from Lamina Propria Macrophages, on the Development of Colitis-Associated Premalignant Cancer in a Murine Model. Journal of Immunology, 2010, 184, 1543-1551.	0.8	197
16	Trans-Signaling Is a Dominant Mechanism for the Pathogenic Actions of Interleukin-6 in the Brain. Journal of Neuroscience, 2014, 34, 2503-2513.	3.6	194
17	Therapeutic Targeting of IL-6 <i>Trans</i> Signaling Counteracts STAT3 Control of Experimental Inflammatory Arthritis. Journal of Immunology, 2009, 182, 613-622.	0.8	185
18	Species Specificity of ADAM10 and ADAM17 Proteins in Interleukin-6 (IL-6) Trans-signaling and Novel Role of ADAM10 in Inducible IL-6 Receptor Shedding. Journal of Biological Chemistry, 2011, 286, 14804-14811.	3.4	174

#	Article	IF	CITATIONS
19	Loss of CD4+ T Cell IL-6R Expression during Inflammation Underlines a Role for IL-6 <i>Trans</i> Signaling in the Local Maintenance of Th17 Cells. Journal of Immunology, 2010, 184, 2130-2139.	0.8	166
20	Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model*. Critical Care Medicine, 2011, 39, 1407-1413.	0.9	163
21	The balance of interleukin (IL)-6, IL-6Â-soluble IL-6 receptor (sIL-6R), and IL-6Â-sIL-6RÂ-sgp130 complexes allows simultaneous classic and trans-signaling. Journal of Biological Chemistry, 2018, 293, 6762-6775.	3.4	142
22	IL-6 Controls the Innate Immune Response against <i>Listeria monocytogenes</i> via Classical IL-6 Signaling. Journal of Immunology, 2013, 190, 703-711.	0.8	140
23	Inhibition of Classic Signaling Is a Novel Function of Soluble Glycoprotein 130 (sgp130), Which Is Controlled by the Ratio of Interleukin 6 and Soluble Interleukin 6 Receptor. Journal of Biological Chemistry, 2011, 286, 42959-42970.	3.4	133
24	The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1485-1494.	3.8	118
25	Classic Interleukin-6 Receptor Signaling and Interleukin-6 trans-Signaling Differentially Control Angiotensin II-Dependent Hypertension, Cardiac Signal Transducer and Activator of Transcription-3 Activation, and Vascular Hypertrophy in Vivo. American Journal of Pathology, 2007, 171, 315-325.	3.8	116
26	An Interleukin-6 Receptor-dependent Molecular Switch Mediates Signal Transduction of the IL-27 Cytokine Subunit p28 (IL-30) via a gp130 Protein Receptor Homodimer. Journal of Biological Chemistry, 2013, 288, 4346-4354.	3.4	112
27	Interleukin-6 and interleukin-11: same same but different. Biological Chemistry, 2013, 394, 1145-1161.	2.5	111
28	HHV-8–encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood, 2012, 119, 5173-5181.	1.4	110
29	SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging, 2017, 9, 2163-2189.	3.1	108
30	Proteolytic Cleavage Governs Interleukin-11 Trans-signaling. Cell Reports, 2016, 14, 1761-1773.	6.4	104
31	Insights into IL-23 biology: From structure to function. Cytokine and Growth Factor Reviews, 2015, 26, 569-578.	7.2	97
32	Sleep enhances ILâ€6 transâ€ s ignaling in humans. FASEB Journal, 2006, 20, 2174-2176.	0.5	94
33	ILâ€6 Transâ€signaling Controls Liver Regeneration After Partial Hepatectomy. Hepatology, 2019, 70, 2075-2091.	7.3	75
34	Interleukin-6 Trans-Signaling and Colonic Cancer Associated with Inflammatory Bowel Disease. Current Pharmaceutical Design, 2009, 15, 2095-2103.	1.9	72
35	Forced Dimerization of gp130 Leads to Constitutive STAT3 Activation, Cytokine-independent Growth, and Blockade of Differentiation of Embryonic Stem Cells. Molecular Biology of the Cell, 2006, 17, 2986-2995.	2.1	71
36	Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proceedings of the United States of America, 2016, 113, 3006-3011.	7.1	68

#	Article	IF	CITATIONS
37	Minimal Interleukin 6 (IL-6) Receptor Stalk Composition for IL-6 Receptor Shedding and IL-6 Classic Signaling. Journal of Biological Chemistry, 2013, 288, 14756-14768.	3.4	66
38	Inflammation-Induced IL-6 Functions as a Natural Brake on Macrophages and Limits GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 1597-1607.	6.1	66
39	The membraneâ€proximal domain of A Disintegrin and Metalloprotease 17 (ADAM17) is responsible for recognition of the interleukinâ€6 receptor and interleukinâ€1 receptor II. FEBS Letters, 2012, 586, 1093-1100.	2.8	63
40	ADAM17-mediated shedding of the IL6R induces cleavage of the membrane stub by γ-secretase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 234-245.	4.1	62
41	Structure-guided Optimization of the Interleukin-6 Trans-signaling Antagonist sgp130. Journal of Biological Chemistry, 2008, 283, 27200-27207.	3.4	60
42	A Disintegrin and Metalloprotease 17 Dynamic Interaction Sequence, the Sweet Tooth for the Human Interleukin 6 Receptor. Journal of Biological Chemistry, 2014, 289, 16336-16348.	3.4	60
43	Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Science Signaling, 2015, 8, ra109.	3.6	60
44	No inhibition of IL-27 signaling by soluble gp130. Biochemical and Biophysical Research Communications, 2005, 326, 724-728.	2.1	58
45	Soluble gp130 prevents interleukin-6 and interleukin-11 cluster signaling but not intracellular autocrine responses. Science Signaling, 2018, 11, .	3.6	56
46	Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle, 2013, 12, 3421-3432.	2.6	55
47	Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Science Advances, 2021, 7,	10.3	55
48	gp130 dimerization in the absence of ligand: Preformed cytokine receptor complexes. Biochemical and Biophysical Research Communications, 2006, 346, 649-657.	2.1	53
49	The interleukin 6 pathway and atherosclerosis. Lancet, The, 2012, 380, 338.	13.7	53
50	Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology, 2012, 217, 996-1004.	1.9	52
51	Identification of Canonical Tyrosine-dependent and Non-canonical Tyrosine-independent STAT3 Activation Sites in the Intracellular Domain of the Interleukin 23 Receptor. Journal of Biological Chemistry, 2013, 288, 19386-19400.	3.4	51
52	Unraveling Viral Interleukin-6 Binding to gp130 and Activation of STAT-Signaling Pathways Independently of the Interleukin-6 Receptor. Journal of Virology, 2009, 83, 5117-5126.	3.4	50
53	Novel Insights into Interleukin 6 (IL-6) Cis- and Trans-signaling Pathways by Differentially Manipulating the Assembly of the IL-6 Signaling Complex. Journal of Biological Chemistry, 2015, 290, 26943-26953.	3.4	50
54	Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. International Journal of Molecular Medicine, 2014, 34, 651-660.	4.0	49

#	Article	IF	CITATIONS
55	Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Trans-Signaling. Scientific Reports, 2017, 7, 44053.	3.3	49
56	Forced Homo- and Heterodimerization of All gp130-Type Receptor Complexes Leads to Constitutive Ligand-independent Signaling and Cytokine-independent Growth. Molecular Biology of the Cell, 2010, 21, 2797-2807.	2.1	48
57	Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. Journal of Autoimmunity, 2013, 40, 74-85.	6.5	48
58	Updating interleukin-6 classic- and trans-signaling. Signal Transduction, 2006, 6, 240-259.	0.4	46
59	A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1. Genes and Development, 2016, 30, 1070-1085.	5.9	46
60	Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochemical Journal, 2006, 398, 577-583.	3.7	43
61	Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget, 2014, 5, 2131-2148.	1.8	43
62	Role of IL-6 trans-signaling in CCl4 induced liver damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1054-1061.	3.8	40
63	Synthetic cytokine receptors transmit biological signals using artificial ligands. Nature Communications, 2018, 9, 2034.	12.8	39
64	Abrogation of Viral Interleukin-6 (vIL-6)-Induced Signaling by Intracellular Retention and Neutralization of vIL-6 with an Anti-vIL-6 Single-Chain Antibody Selected by Phage Display. Journal of Virology, 2006, 80, 8510-8520.	3.4	38
65	Non-Canonical Interleukin 23 Receptor Complex Assembly. Journal of Biological Chemistry, 2015, 290, 359-370.	3.4	38
66	Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases. Molecular Biology of the Cell, 2016, 27, 2301-2316.	2.1	38
67	A Novel Role for IL-6 Receptor Classic Signaling: Induction of RORÎ ³ t+Foxp3+ Tregs with Enhanced Suppressive Capacity. Journal of the American Society of Nephrology: JASN, 2019, 30, 1439-1453.	6.1	37
68	Pivotal Role of Phospholipase D1 in Tumor Necrosis Factor-α–Mediated Inflammation and Scar Formation after Myocardial Ischemia and Reperfusion in Mice. American Journal of Pathology, 2014, 184, 2450-2464.	3.8	36
69	Titin-Based Cardiac Myocyte Stiffening Contributes to Early Adaptive Ventricular Remodeling After Myocardial Infarction. Circulation Research, 2016, 119, 1017-1029.	4.5	36
70	Immunoreceptor Engineering and Synthetic Cytokine Signaling for Therapeutics. Trends in Immunology, 2019, 40, 258-272.	6.8	31
71	IL-12 and IL-23—Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells, 2020, 9, 2184.	4.1	31
72	Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. Journal of Hepatology, 2011, 54, 922-929.	3.7	30

#	Article	IF	CITATIONS
73	Soluble T cell immunoglobulin and mucin domain (TIM)-1 and -4 generated by A Disintegrin And Metalloprotease (ADAM)-10 and -17 bind to phosphatidylserine. Biochimica Ét Biophysica Acta - Molecular Cell Research, 2014, 1843, 275-287.	4.1	30
74	Transcytosis of IL-11 and Apical Redirection of gp130 Is Mediated by IL-11α Receptor. Cell Reports, 2016, 16, 1067-1081.	6.4	30
75	Essential role of neutrophil mobilization in concanavalin A-induced hepatitis is based on classic IL-6 signaling but not on IL-6 trans-signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 290-301.	3.8	29
76	Constitutively Active Mutant gp130 Receptor Protein from Inflammatory Hepatocellular Adenoma Is Inhibited by an Anti-gp130 Antibody That Specifically Neutralizes Interleukin 11 Signaling. Journal of Biological Chemistry, 2012, 287, 13743-13751.	3.4	29
77	Constitutively Active Mutant gp130 Receptor Protein from Inflammatory Hepatocellular Adenoma Is Inhibited by an Anti-gp130 Antibody That Specifically Neutralizes Interleukin 11 Signaling. Journal of Biological Chemistry, 2012, 287, 13743-13751.	3.4	29
78	Alternative Intronic Polyadenylation Generates the Interleukin-6 Trans-signaling Inhibitor sgp130-E10. Journal of Biological Chemistry, 2014, 289, 22140-22150.	3.4	28
79	The Role of Embryonic Stem Cell-expressed RAS (ERAS) in the Maintenance of Quiescent Hepatic Stellate Cells. Journal of Biological Chemistry, 2016, 291, 8399-8413.	3.4	26
80	CD73â€derived adenosine and tenascinâ€C control cytokine production by epicardiumâ€derived cells formed after myocardial infarction. FASEB Journal, 2017, 31, 3040-3053.	0.5	26
81	B Cellâ€Mediated Maintenance of Cluster of Differentiation 169–Positive Cells Is Critical for Liver Regeneration. Hepatology, 2018, 68, 2348-2361.	7.3	26
82	Recombinant p35 from Bacteria Can Form Interleukin (IL-)12, but Not IL-35. PLoS ONE, 2014, 9, e107990.	2.5	25
83	Modular organization of Interleukin-6 and Interleukin-11 α-receptors. Biochimie, 2015, 119, 175-182.	2.6	25
84	Peripheral and central blockade of interleukin-6 trans-signaling differentially affects sleep architecture. Brain, Behavior, and Immunity, 2015, 50, 178-185.	4.1	25
85	The Role of Metalloproteinase ADAM17 in Regulating ICOS Ligand–Mediated Humoral Immune Responses. Journal of Immunology, 2014, 193, 2753-2763.	0.8	23
86	"Family reunion―– A structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine and Growth Factor Reviews, 2015, 26, 471-474.	7.2	23
87	The Amino Acid Exchange R28E in Ciliary Neurotrophic Factor (CNTF) Abrogates Interleukin-6 Receptor-dependent but Retains CNTF Receptor-dependent Signaling via Glycoprotein 130 (gp130)/Leukemia Inhibitory Factor Receptor (LIFR). Journal of Biological Chemistry, 2014, 289, 18442-18450.	3.4	21
88	A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Research, 2020, 8, 24.	11.4	21
89	Human and Murine Interleukin 23 Receptors Are Novel Substrates for A Disintegrin and Metalloproteases ADAM10 and ADAM17. Journal of Biological Chemistry, 2016, 291, 10551-10561.	3.4	20
90	Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Molecular and Cellular Biology, 2017, 37, .	2.3	20

#	Article	IF	CITATIONS
91	Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein. Cells, 2020, 9, 1950.	4.1	19
92	Synthetic Cargo Internalization Receptor System for Nanoparticle Tracking of Individual Cell Populations by Fluorine Magnetic Resonance Imaging. ACS Nano, 2018, 12, 11178-11192.	14.6	18
93	Circulating Soluble IL-6R but Not ADAM17 Activation Drives Mononuclear Cell Migration in Tissue Inflammation. Journal of Immunology, 2016, 197, 3705-3715.	0.8	17
94	iRhom2 inhibits bile duct obstructionâ \in "induced liver fibrosis. Science Signaling, 2019, 12, .	3.6	16
95	Histone deacetylase 5 regulates interleukin 6 secretion and insulin action in skeletal muscle. Molecular Metabolism, 2020, 42, 101062.	6.5	15
96	A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody suppresses collagen-induced arthritis in mice. Journal of Biotechnology, 2014, 175, 45-52.	3.8	13
97	A soluble form of the interleukin-6 family signal transducer gp130 is dimerized via a C-terminal disulfide bridge resulting from alternative mRNA splicing. Biochemical and Biophysical Research Communications, 2016, 470, 870-876.	2.1	13
98	Deciphering site 3 interactions of interleukin 12 and interleukin 23 with their cognate murine and human receptors. Journal of Biological Chemistry, 2020, 295, 10478-10492.	3.4	13
99	Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. Journal of Biological Chemistry, 2020, 295, 12378-12397.	3.4	13
100	Selective inhibition of IL-6 trans-signaling by a miniaturized, optimized chimeric soluble gp130 inhibits T _H 17 cell expansion. Science Signaling, 2021, 14, .	3.6	13
101	Interleukin-6 Trans-Signaling Regulates Glycogen Consumption After <scp>d</scp> -Galactosamine-Induced Liver Damage. Journal of Interferon and Cytokine Research, 2009, 29, 711-718.	1.2	12
102	Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis. Frontiers in Immunology, 2017, 8, 1537.	4.8	12
103	Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine and Growth Factor Reviews, 2019, 47, 1-20.	7.2	11
104	A2bR-dependent signaling alters immune cell composition and enhances IL-6 formation in the ischemic heart. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H190-H200.	3.2	11
105	Efficiently Restored Thrombopoietin Production by Ashwellâ€Morell Receptor and ILâ€6R Induced Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling Early After Partial Hepatectomy. Hepatology, 2021, 74, 411-427.	7.3	10
106	Effects of Blockade of Peripheral Interleukin-6 Trans-Signaling on Hippocampus-Dependent and Independent Memory in Mice. Journal of Interferon and Cytokine Research, 2013, 33, 254-260.	1.2	9
107	Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Scientific Reports, 2015, 5, 14685.	3.3	8
108	Collagen-binding IL-12 inflames â€~cold' tumours. Nature Biomedical Engineering, 2020, 4, 483-484.	22.5	8

#	Article	IF	CITATIONS
109	Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine, 2021, 148, 155550.	3.2	8
110	Exclusive inhibition of IL-6 trans-signaling by soluble gp130FlyRFc. Cytokine: X, 2021, 3, 100058.	1.4	8
111	Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS ONE, 2020, 15, e0230804.	2.5	7
112	Tâ€cell immunoglobulin and mucin domainÂ2 (<scp>TIM</scp> â€2) is a target of <scp>ADAM</scp> 10â€mediated ectodomain shedding. FEBS Journal, 2014, 281, 157-174.	4.7	6
113	Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction. Journal of Biological Chemistry, 2021, 297, 101295.	3.4	6
114	Split ² Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors. ACS Synthetic Biology, 2017, 6, 2260-2272.	3.8	5
115	Combined deletion of the fibronectin-type III domains and the stalk region results in ligand-independent, constitutive activation of the Interleukin 6 signal-transducing receptor gp130. Cytokine, 2018, 110, 428-434.	3.2	5
116	A Hybrid Soluble gp130/Spike-Nanobody Fusion Protein Simultaneously Blocks Interleukin-6 <i>trans</i> -Signaling and Cellular Infection with SARS-CoV-2. Journal of Virology, 2022, 96, JVI0162221.	3.4	5
117	Pro- and anti-apoptotic fate decisions induced by di- and trimeric synthetic cytokine receptors. IScience, 2021, 24, 102471.	4.1	4
118	The role of ADAM17 during liver damage. Biological Chemistry, 2021, 402, 1115-1128.	2.5	3
119	Investigation of Fascin1, a Marker of Mature Dendritic Cells, Reveals a New Role for IL-6 Signaling in CCR7-Mediated Chemotaxis. Journal of Immunology, 2021, 207, 938-949.	0.8	3
120	Control and consequences of IL-6 receptor ectodomain shedding. European Journal of Medical Research, 2014, 19, .	2.2	1
121	IL-23R Signaling Plays No Role in Myocardial Infarction. Scientific Reports, 2018, 8, 17078.	3.3	1
122	Reply. Hepatology, 2019, 70, 1074-1075.	7.3	0
123	Title is missing!. , 2020, 15, e0230804.		0
124	Title is missing!. , 2020, 15, e0230804.		0
125	Title is missing!. , 2020, 15, e0230804.		0
126	Title is missing!. , 2020, 15, e0230804.		0

8