Gopal P Sapkota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications. SLAS Discovery, 2021, 26, 885-895.	2.7	1
2	FAM83F regulates canonical Wnt signalling through an interaction with CK1α. Life Science Alliance, 2021, 4, e202000805.	2.8	6
3	IMiDs induce FAM83F degradation via an interaction with CK1α to attenuate Wnt signalling. Life Science Alliance, 2021, 4, e202000804.	2.8	3
4	Inducible Degradation of Target Proteins through a Tractable Affinity-Directed Protein Missile System. Cell Chemical Biology, 2020, 27, 1164-1180.e5.	5.2	42
5	Targeting Endogenous K-RAS for Degradation through the Affinity-Directed Protein Missile System. Cell Chemical Biology, 2020, 27, 1151-1163.e6.	5.2	43
6	Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle, 2020, 19, 505-524.	2.6	12
7	Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses. Cell Death and Disease, 2020, 11, 49.	6.3	11
8	Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Cellular Signalling, 2020, 72, 109632.	3.6	5
9	Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochemical Journal, 2020, 477, 4603-4621.	3.7	31
10	<scp>FAM</scp> 83D directs protein kinase <scp>CK</scp> 1α to the mitotic spindle for proper spindle positioning. EMBO Reports, 2019, 20, e47495.	4.5	28
11	Advances in targeted degradation of endogenous proteins. Cellular and Molecular Life Sciences, 2019, 76, 2761-2777.	5.4	73
12	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 2019, 4, 133.	1.8	6
13	FAM83C/PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. Journal of Cell Science, 2018, 131, .	2.0	26
14	<scp>PAWS</scp> 1 controls Wnt signalling through association with casein kinase 11±. EMBO Reports, 2018, 19, .	4.5	27
15	The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms. Biochemical Society Transactions, 2018, 46, 761-771.	3.4	43
16	The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Science Signaling, 2018, 11, .	3.6	88
17	TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. ELife, 2018, 7, .	6.0	119
18	Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open Biology, 2017, 7, 170066.	3.6	61

GOPAL P SAPKOTA

#	Article	IF	CITATIONS
19	Brd4â€Brd2 isoform switching coordinates pluripotent exit and Smad2â€dependent lineage specification. EMBO Reports, 2017, 18, 1108-1122.	4.5	26
20	Characterization of Protein Complexes Using Chemical Cross-Linking Coupled Electrospray Mass Spectrometry. Methods in Molecular Biology, 2017, 1788, 43-61.	0.9	2
21	An Affinity-directed Protein Missile (AdPROM) System for Targeted Destruction of Endogenous Proteins. Bio-protocol, 2017, 7, e2614.	0.4	3
22	lnactivation of TGFÎ ² receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
23	An affinity-directed protein missile system for targeted proteolysis. Open Biology, 2016, 6, 160255.	3.6	67
24	Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser ¹⁶ to trigger its nuclear localization. Science Signaling, 2015, 8, ra35.	3.6	54
25	Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9. Scientific Reports, 2015, 5, 9811.	3.3	38
26	USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biology, 2014, 4, 140065.	3.6	45
27	Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling. Open Biology, 2014, 4, 130210.	3.6	35
28	The emerging roles of deubiquitylating enzymes (DUBs) in the TGFÎ ² and BMP pathways. Cellular Signalling, 2014, 26, 2186-2192.	3.6	30
29	OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nature Communications, 2013, 4, 2519.	12.8	110
30	The TGFβ-induced phosphorylation and activation of p38 mitogen-activated protein kinase is mediated by MAP3K4 and MAP3K10 but not TAK1. Open Biology, 2013, 3, 130067.	3.6	21
31	USP11 augments TGFÎ ² signalling by deubiquitylating ALK5. Open Biology, 2012, 2, 120063.	3.6	100
32	Protein phosphatase 5 modulates SMAD3 function in the transforming growth factorâ€Î² pathway. Cellular Signalling, 2012, 24, 1999-2006.	3.6	21
33	Regulation of the transforming growth factor \hat{I}^2 pathway by reversible ubiquitylation. Open Biology, 2012, 2, 120082.	3.6	22
34	Phosphatases in SMAD regulation. FEBS Letters, 2012, 586, 1897-1905.	2.8	70
35	The specificities of small molecule inhibitors of the TGFß and BMP pathways. Cellular Signalling, 2011, 23, 1831-1842.	3.6	234
36	Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-β Pathways. Cell, 2009, 139, 757-769.	28.9	627

GOPAL P SAPKOTA

#	Article	IF	CITATIONS
37	Ubiquitin Ligase Nedd4L Targets Activated Smad2/3 to Limit TGF-β Signaling. Molecular Cell, 2009, 36, 457-468.	9.7	306
38	BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochemical Journal, 2007, 401, 29-38.	3.7	272
39	Balancing BMP Signaling through Integrated Inputs into the Smad1 Linker. Molecular Cell, 2007, 25, 441-454.	9.7	381
40	Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-β Pathways. Journal of Biological Chemistry, 2006, 281, 40412-40419.	3.4	147
41	Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11940-11945.	7.1	117
42	Phosphorylation of a Distinct Structural Form of Phosphatidylinositol Transfer Protein α at Ser166 by Protein Kinase C Disrupts Receptor-mediated Phospholipase C Signaling by Inhibiting Delivery of Phosphatidylinositol to Membranes. Journal of Biological Chemistry, 2004, 279, 47159-47171.	3.4	21
43	Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO Journal, 2003, 22, 3062-3072.	7.8	326
44	LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Letters, 2003, 546, 159-165.	2.8	162
45	Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochemical Journal, 2002, 368, 243-251.	3.7	173
46	Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and) Tj ETQq0 0 0 Journal, 2002, 362, 481.	rgBT /Ove 3.7	rlock 10 Tf 5 59
47	Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and) Tj ETQq1 1 0. Journal, 2002, 362, 481-490.	784314 r <u>{</u> 3.7	gBT /Overloc 74
48	Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochemical Journal, 2002, 368, 507-516.	3.7	99
49	Akt-Mediated Phosphorylation of the G Protein-Coupled Receptor EDG-1 Is Required for Endothelial Cell Chemotaxis. Molecular Cell, 2001, 8, 693-704.	9.7	286
50	Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth. Journal of Biological Chemistry, 2001, 276, 19469-19482.	3.4	234
51	Reduction of Nitrite to Nitric Oxide Catalyzed by Xanthine Oxidoreductase. Journal of Biological Chemistry, 2000, 275, 7757-7763.	3.4	350
52	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 0, 4, 133.	1.8	9