Gopal P Sapkota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-Î ² Pathways. Cell, 2009, 139, 757-769.	28.9	627
2	Balancing BMP Signaling through Integrated Inputs into the Smad1 Linker. Molecular Cell, 2007, 25, 441-454.	9.7	381
3	Reduction of Nitrite to Nitric Oxide Catalyzed by Xanthine Oxidoreductase. Journal of Biological Chemistry, 2000, 275, 7757-7763.	3.4	350
4	Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO Journal, 2003, 22, 3062-3072.	7.8	326
5	Ubiquitin Ligase Nedd4L Targets Activated Smad2/3 to Limit TGF-β Signaling. Molecular Cell, 2009, 36, 457-468.	9.7	306
6	Akt-Mediated Phosphorylation of the G Protein-Coupled Receptor EDG-1 Is Required for Endothelial Cell Chemotaxis. Molecular Cell, 2001, 8, 693-704.	9.7	286
7	BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochemical Journal, 2007, 401, 29-38.	3.7	272
8	Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth. Journal of Biological Chemistry, 2001, 276, 19469-19482.	3.4	234
9	The specificities of small molecule inhibitors of the TGFß and BMP pathways. Cellular Signalling, 2011, 23, 1831-1842.	3.6	234
10	Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochemical Journal, 2002, 368, 243-251.	3.7	173
11	LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Letters, 2003, 546, 159-165.	2.8	162
12	Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-β Pathways. Journal of Biological Chemistry, 2006, 281, 40412-40419.	3.4	147
13	TGF-Î ² uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. ELife, 2018, 7, .	6.0	119
14	Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11940-11945.	7.1	117
15	OTUB1 enhances TGFÎ ² signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nature Communications, 2013, 4, 2519.	12.8	110
16	USP11 augments TGF \hat{I}^2 signalling by deubiquitylating ALK5. Open Biology, 2012, 2, 120063.	3.6	100
17	lonizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochemical Journal, 2002, 368, 507-516.	3.7	99
18	The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Science Signaling, 2018, 11, .	3.6	88

GOPAL P SAPKOTA

#	Article	IF	CITATIONS
19	Inactivation of TCFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
20	Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and) Tj ETQq0 Journal, 2002, 362, 481-490.	0 0 rgBT /Ov 3.7	erlock 10 Tf 5 74
21	Advances in targeted degradation of endogenous proteins. Cellular and Molecular Life Sciences, 2019, 76, 2761-2777.	5.4	73
22	Phosphatases in SMAD regulation. FEBS Letters, 2012, 586, 1897-1905.	2.8	70
23	An affinity-directed protein missile system for targeted proteolysis. Open Biology, 2016, 6, 160255.	3.6	67
24	Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open Biology, 2017, 7, 170066.	3.6	61
25	Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and) Tj ETQq1 Journal, 2002, 362, 481.	1 0.784314 3.7	rgBT /Overlo <mark>c</mark> 59
26	Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser ¹⁶ to trigger its nuclear localization. Science Signaling, 2015, 8, ra35.	3.6	54
27	USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biology, 2014, 4, 140065.	3.6	45
28	The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms. Biochemical Society Transactions, 2018, 46, 761-771.	3.4	43
29	Targeting Endogenous K-RAS for Degradation through the Affinity-Directed Protein Missile System. Cell Chemical Biology, 2020, 27, 1151-1163.e6.	5.2	43
30	Inducible Degradation of Target Proteins through a Tractable Affinity-Directed Protein Missile System. Cell Chemical Biology, 2020, 27, 1164-1180.e5.	5.2	42
31	Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9. Scientific Reports, 2015, 5, 9811.	3.3	38
32	Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling. Open Biology, 2014, 4, 130210.	3.6	35
33	Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochemical Journal, 2020, 477, 4603-4621.	3.7	31
34	The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cellular Signalling, 2014, 26, 2186-2192.	3.6	30
35	<scp>FAM</scp> 83D directs protein kinase <scp>CK</scp> 1α to the mitotic spindle for proper spindle positioning. EMBO Reports, 2019, 20, e47495.	4.5	28
36	<scp>PAWS</scp> 1 controls Wnt signalling through association with casein kinase 11±. EMBO Reports, 2018, 19	4.5	27

GOPAL P SAPKOTA

#	Article	IF	CITATIONS
37	Brd4â€Brd2 isoform switching coordinates pluripotent exit and Smad2â€dependent lineage specification. EMBO Reports, 2017, 18, 1108-1122.	4.5	26
38	FAM83G/PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. Journal of Cell Science, 2018, 131, .	2.0	26
39	Regulation of the transforming growth factor β pathway by reversible ubiquitylation. Open Biology, 2012, 2, 120082.	3.6	22
40	Phosphorylation of a Distinct Structural Form of Phosphatidylinositol Transfer Protein α at Ser166 by Protein Kinase C Disrupts Receptor-mediated Phospholipase C Signaling by Inhibiting Delivery of Phosphatidylinositol to Membranes. Journal of Biological Chemistry, 2004, 279, 47159-47171.	3.4	21
41	Protein phosphatase 5 modulates SMAD3 function in the transforming growth factorâ€Î² pathway. Cellular Signalling, 2012, 24, 1999-2006.	3.6	21
42	The TGFβ-induced phosphorylation and activation of p38 mitogen-activated protein kinase is mediated by MAP3K4 and MAP3K10 but not TAK1. Open Biology, 2013, 3, 130067.	3.6	21
43	Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle, 2020, 19, 505-524.	2.6	12
44	Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses. Cell Death and Disease, 2020, 11, 49.	6.3	11
45	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 0, 4, 133.	1.8	9
46	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 2019, 4, 133.	1.8	6
47	FAM83F regulates canonical Wnt signalling through an interaction with CK1α. Life Science Alliance, 2021, 4, e202000805.	2.8	6
48	Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Cellular Signalling, 2020, 72, 109632.	3.6	5
49	An Affinity-directed Protein Missile (AdPROM) System for Targeted Destruction of Endogenous Proteins. Bio-protocol, 2017, 7, e2614.	0.4	3
50	IMiDs induce FAM83F degradation via an interaction with CK1α to attenuate Wnt signalling. Life Science Alliance, 2021, 4, e202000804.	2.8	3
51	Characterization of Protein Complexes Using Chemical Cross-Linking Coupled Electrospray Mass Spectrometry. Methods in Molecular Biology, 2017, 1788, 43-61.	0.9	2
52	A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications. SLAS Discovery, 2021, 26, 885-895.	2.7	1