
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel nanostructured thermal interface materials: a review. International Materials Reviews, 2018, 63, 22-45.	19.3	261
2	Graphene related materials for thermal management. 2D Materials, 2020, 7, 012001.	4.4	161
3	Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing, 1999, 22, 299-302.	1.4	157
4	Synthesis of graphene quantum dots and their applications in drug delivery. Journal of Nanobiotechnology, 2020, 18, 142.	9.1	142
5	Functionalization mediates heat transport in graphene nanoflakes. Nature Communications, 2016, 7, 11281.	12.8	123
6	Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application. Advanced Functional Materials, 2015, 25, 4430-4435.	14.9	117
7	Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering. Small, 2018, 14, e1801346.	10.0	106
8	Bioactive 3D cell culture system minimizes cellular stress and maintains the <i>in vivo</i> â€ŀike morphological complexity of astroglial cells. Glia, 2013, 61, 432-440.	4.9	100
9	Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, 2013, 61, 342-348.	10.3	96
10	Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Advances, 2017, 7, 45968-45977.	3.6	76
11	Stretchable Thermoelectric Generators Metallized with Liquid Alloy. ACS Applied Materials & Interfaces, 2017, 9, 15791-15797.	8.0	72
12	Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. Journal of Alloys and Compounds, 2009, 484, 777-781.	5.5	71
13	Carbonâ€Nanotube Throughâ€Silicon Via Interconnects for Threeâ€Dimensional Integration. Small, 2011, 7, 2313-2317.	10.0	69
14	Through-Silicon Vias Filled With Densified and Transferred Carbon Nanotube Forests. IEEE Electron Device Letters, 2012, 33, 420-422.	3.9	67
15	Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electronic Materials Letters, 2016, 12, 1-16.	2.2	67
16	Tensile properties and microstructural characterization of Sn–0.7Cu–0.4Co bulk solder alloy for electronics applications. Journal of Alloys and Compounds, 2008, 457, 97-105.	5.5	55
17	Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology, 2009, 20, 485203.	2.6	54
18	Direct Photolithographic Patterning of Electrospun Films for Defined Nanofibrillar Microarchitectures. Langmuir, 2010, 26, 2235-2239.	3.5	52

#	Article	IF	CITATIONS
19	Stem cell responses to plasma surface modified electrospun polyurethane scaffolds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e949-e958.	3.3	50
20	Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon, 2017, 111, 402-410.	10.3	50
21	Ultrafast Transfer of Metalâ€Enhanced Carbon Nanotubes at Low Temperature for Largeâ€Scale Electronics Assembly. Advanced Materials, 2010, 22, 5039-5042.	21.0	48
22	Nanoparticles of the Lead-free Solder Alloy Sn-3.0Ag-0.5Cu with Large Melting Temperature Depression. Journal of Electronic Materials, 2009, 38, 351-355.	2.2	47
23	Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. European Polymer Journal, 2012, 48, 472-482.	5.4	47
24	Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application. Journal of Alloys and Compounds, 2020, 820, 153114.	5.5	47
25	Vertically Stacked Carbon Nanotube-Based Interconnects for Through Silicon Via Application. IEEE Electron Device Letters, 2015, 36, 499-501.	3.9	44
26	Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Advances, 2016, 6, 38124-38134.	3.6	44
27	Thermodynamic assessment of the Sn-Co lead-free solder system. Journal of Electronic Materials, 2004, 33, 935-939.	2.2	43
28	Surfaceâ€Confined Synthesis of Silver Nanoparticle Composite Coating on Electrospun Polyimide Nanofibers. Small, 2011, 7, 3057-3066.	10.0	43
29	<scp>HB</scp> â€ <scp>EGF</scp> affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. Journal of Neurochemistry, 2014, 128, 878-889.	3.9	43
30	Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology, 2016, 27, 335705.	2.6	43
31	Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 406-414.	5.6	43
32	High temperature aging study of intermetallic compound formation of Sn–3.5Ag and Sn–4.0Ag–0.5Cu solders on electroless Ni(P) metallization. Journal of Alloys and Compounds, 2006, 425, 191-199.	5.5	42
33	Dry densification of carbon nanotube bundles. Carbon, 2010, 48, 3795-3801.	10.3	39
34	Scalable production of thick graphene film for next generation thermal management application. Carbon, 2020, 167, 270-277.	10.3	39
35	Templated Growth of Covalently Bonded Threeâ€Ðimensional Carbon Nanotube Networks Originated from Graphene. Advanced Materials, 2012, 24, 1576-1581.	21.0	37
36	Thermal Conductivity Enhancement of Coaxial Carbon@Boron Nitride Nanotube Arrays. ACS Applied Materials & Interfaces, 2017, 9, 14555-14560.	8.0	35

#	Article	IF	CITATIONS
37	Experimental and theoretical characterization of electrical contact in anisotropically conductive adhesive. IEEE Transactions on Advanced Packaging, 2000, 23, 15-21.	1.6	33
38	Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging. Journal Physics D: Applied Physics, 2016, 49, 265501.	2.8	33
39	Review of current progress of thermal interface materials for electronics thermal management applications. , 2016, , .		32
40	Compact and low loss electrochemical capacitors using a graphite / carbon nanotube hybrid material for miniaturized systems. Journal of Power Sources, 2019, 412, 374-383.	7.8	32
41	Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites. ACS Applied Materials & Interfaces, 2020, 12, 27476-27484.	8.0	32
42	Study of interfacial reactions in Sn–3.5Ag–3.0Bi and Sn–8.0Zn–3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate. Journal of Alloys and Compounds, 2007, 437, 169-179.	5.5	30
43	Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectronic Engineering, 2013, 103, 177-180.	2.4	30
44	A REVIEW OF MICROWAVE CURING OF POLYMERIC MATERIALS. Journal of Electronics Manufacturing, 2000, 10, 181-189.	0.4	29
45	Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25, 273-278.	1.4	29
46	Electrical Conductive Characteristics of Anisotropic Conductive Adhesive Particles. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125, 609-616.	1.8	29
47	Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon, 2016, 106, 195-201.	10.3	28
48	Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 2333-2338.	2.2	26
49	Polymer-metal nanofibrous composite for thermal management of microsystems. Materials Letters, 2012, 75, 229-232.	2.6	25
50	Organic Thinâ€Film Transistors with Anodized Gate Dielectric Patterned by Selfâ€Aligned Embossing on Flexible Substrates. Advanced Functional Materials, 2012, 22, 1209-1214.	14.9	24
51	Modeling of the effective thermal conductivity of composite materials with FEM based on resistor networks approach. Microsystem Technologies, 2010, 16, 633-639.	2.0	23
52	Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent Electrodes: A First Attempt. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 494-501.	1.7	23
53	A Novel Graphene Quantum Dotâ€Based mRNA Delivery Platform. ChemistryOpen, 2021, 10, 666-671.	1.9	23
54	Significance of intermediate production processes in life cycle assessment of electronic products assessed using a generic compact model. Journal of Cleaner Production, 2005, 13, 1269-1279.	9.3	22

#	Article	IF	CITATIONS
55	Carbon nanotubes for electronics manufacturing and packaging: from growth to integration. Advances in Manufacturing, 2013, 1, 13-27.	6.1	22
56	A new solder matrix nano polymer composite for thermal management applications. Composites Science and Technology, 2014, 94, 54-61.	7.8	21
57	A carbon fiber solder matrix composite for thermal management of microelectronic devices. Journal of Materials Chemistry C, 2014, 2, 7184-7187.	5.5	21
58	Tape-Assisted Transfer of Carbon Nanotube Bundles for Through-Silicon-Via Applications. Journal of Electronic Materials, 2015, 44, 2898-2907.	2.2	21
59	Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors. Journal of Materials Chemistry A, 2018, 6, 18267-18275.	10.3	21
60	Flexible Multifunctionalized Carbon Nanotubesâ€Based Hybrid Nanowires. Advanced Functional Materials, 2015, 25, 4135-4143.	14.9	20
61	Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds. Advanced Materials Interfaces, 2018, 5, 1800318.	3.7	20
62	Selective growth of double-walled carbon nanotubes on gold films. Materials Letters, 2012, 72, 78-80.	2.6	19
63	Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Films for Thermal Packaging Applications. Materials, 2020, 13, 317.	2.9	19
64	Electrical characterization of isotropic conductive adhesive under mechanical loading. Journal of Electronic Materials, 2002, 31, 916-920.	2.2	18
65	Theoretical Analysis of RF Performance of Anisotropic Conductive Adhesive Flip-Chip Joints. IEEE Transactions on Components and Packaging Technologies, 2004, 27, 546-550.	1.3	18
66	Formation of three-dimensional carbon nanotube structures by controllable vapor densification. Materials Letters, 2012, 78, 184-187.	2.6	17
67	A High Performance Ag Alloyed Nano-scale n-type Bi2Te3 Based Thermoelectric Material. Materials Today: Proceedings, 2015, 2, 610-619.	1.8	17
68	Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 2017, 79, 206-220.	1.7	17
69	High porosity and light weight graphene foam heat sink and phase change material container for thermal management. Nanotechnology, 2020, 31, 424003.	2.6	17
70	Elevated thermoelectric figure of merit of n-type amorphous silicon by efficient electrical doping process. Nano Energy, 2018, 44, 89-94.	16.0	16
71	Finite Element Analysis to the Constitutive Behavior of Sintered Silver Nanoparticles Under Nanoindentation. International Journal of Applied Mechanics, 2018, 10, 1850110.	2.2	16
72	Properties of Undoped Few-Layer Graphene-Based Transparent Heaters. Materials, 2020, 13, 104.	2.9	16

#	Article	IF	CITATIONS
73	Effect of different temperature cycle profiles on the crack propagation and microstructural evolution of lead free solder joints of different electronic components. , 0, , .		15
74	Embedded Fin‣ike Metal/CNT Hybrid Structures for Flexible and Transparent Conductors. Small, 2016, 12, 1521-1526.	10.0	15
75	Mechanical and thermal characterization of a novel nanocomposite thermal interface material for electronic packaging. Microelectronics Reliability, 2016, 56, 129-135.	1.7	15
76	Effects of high temperature treatment of carbon nanotube arrays on graphite: increased crystallinity, anchoring and inter-tube bonding. Nanotechnology, 2020, 31, 455708.	2.6	15
77	Degradation of Carbon Nanotube Array Thermal Interface Materials through Thermal Aging: Effects of Bonding, Array Height, and Catalyst Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 30992-31000.	8.0	15
78	Microwave-transmission, heat and temperature properties of electrically conductive adhesive. IEEE Transactions on Components and Packaging Technologies, 2003, 26, 193-198.	1.3	14
79	LCA of electronic products. International Journal of Life Cycle Assessment, 2004, 9, 45-52.	4.7	14
80	Understanding noninvasive charge transfer doping of graphene: a comparative study. Journal of Materials Science: Materials in Electronics, 2018, 29, 5239-5252.	2.2	14
81	LIFE CYCLE ASSESSMENT OF A TELECOMMUNICATIONS EXCHANGE. Journal of Electronics Manufacturing, 2000, 10, 147-160.	0.4	13
82	Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor. Chemical Engineering Journal, 2016, 304, 106-114.	12.7	13
83	Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation. Acta Materialia, 2016, 104, 109-118.	7.9	13
84	Chemical vapor deposition grown graphene on Cu-Pt alloys. Materials Letters, 2017, 193, 255-258.	2.6	13
85	Surface Modification of Graphene for Use as a Structural Fortifier in Water-Borne Epoxy Coatings. Coatings, 2019, 9, 754.	2.6	13
86	Formulation and characterization of anisotropic conductive adhesive paste for microelectronics packaging applications. Journal of Electronic Materials, 2005, 34, 1420-1427.	2.2	12
87	A Highly Conductive Bimodal Isotropic Conductive Adhesive and Its Reliability. ECS Transactions, 2011, 34, 583-588.	0.5	12
88	The Effect of Functionalized Silver on Rheological and Electrical Properties of Conductive Adhesives. ECS Transactions, 2011, 34, 811-816.	0.5	12
89	Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Applications. Chemistry - A European Journal, 2020, 26, 6561-6568.	3.3	12
90	A lightweight and high thermal performance graphene heat pipe. Nano Select, 2021, 2, 364-372.	3.7	12

#	Article	IF	CITATIONS
91	Reliability Investigation of a Carbon Nanotube Array Thermal Interface Material. Energies, 2019, 12, 2080.	3.1	11
92	Graphene-Based Films: Fabrication, Interfacial Modification, and Applications. Nanomaterials, 2021, 11, 2539.	4.1	11
93	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	3.5	11
94	Coffinâ€Manson constant determination for a Snâ€8Znâ€3Bi leadâ€free solder joint. Soldering and Surface Mount Technology, 2006, 18, 4-11.	1.5	10
95	System-on-package: a broad perspective from system design to technology development. Microelectronics Reliability, 2003, 43, 1339-1348.	1.7	9
96	Thick film patterning by lift-off process using double-coated single photoresists. Materials Letters, 2012, 76, 117-119.	2.6	9
97	Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics. ACS Applied Materials & Interfaces, 2017, 9, 7456-7464.	8.0	9
98	Thermal Interface Materials Based on Vertically Aligned Carbon Nanotube Arrays: A Review. Micro and Nanosystems, 2019, 11, 3-10.	0.6	9
99	Process development and reliability for system-in-a-package using liquid crystal polymer substrate. , 0, , .		8
100	Study on the Reliability of Fast Curing Isotropic Conductive Adhesive. ECS Transactions, 2011, 34, 805-810.	0.5	8
101	Chemical Vapor Deposition of Vertically Aligned Carbon Nanotube Arrays: Critical Effects of Oxide Buffer Layers. Nanoscale Research Letters, 2019, 14, 106.	5.7	8
102	Manufacturing Grapheneâ€Encapsulated Copper Particles by Chemical Vapor Deposition in a Cold Wall Reactor. ChemistryOpen, 2019, 8, 58-63.	1.9	8
103	Bipolar electrochemical capacitors using double-sided carbon nanotubes on graphite electrodes. Journal of Power Sources, 2020, 451, 227765.	7.8	8
104	Graphene based thermal management system for battery cooling in electric vehicles. , 2020, , .		8
105	Combination of positive charges and honeycomb pores to promote MC3T3-E1 cell behaviour. RSC Advances, 2015, 5, 42276-42286.	3.6	7
106	Cooling hot spots by hexagonal boron nitride heat spreaders. , 2015, , .		7
107	Surface analysis of iron and steel nanopowder. Surface and Interface Analysis, 2018, 50, 1083-1088.	1.8	7
108	A general Weibull model for reliability analysis under different failure Criteria-application on anisotropic conductive adhesive joining technology. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28, 322-327.	1.4	6

#	Article	IF	CITATIONS
109	Computational fluid dynamics for effects of coolants on on-chip cooling capability with carbon nanotube micro-fin architectures. Microsystem Technologies, 2009, 15, 375-381.	2.0	6
110	Preparation of graphene/aligned carbon nanotube array composite films for thermal packaging applications. Japanese Journal of Applied Physics, 2019, 58, SHHH01.	1.5	6
111	Thermal conductivity enhancement of carbon@ carbon nanotube arrays and bonded carbon nanotube network. Materials Research Express, 2019, 6, 085616.	1.6	6
112	Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites. Journal of Electronic Materials, 2022, 51, 420-425.	2.2	6
113	Carbon Nanotubes in Electronics Interconnect Applications with a Focus on 3D-TSV Technology. ECS Transactions, 2012, 44, 683-692.	0.5	5
114	Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes. Electronic Materials Letters, 2016, 12, 329-337.	2.2	5
115	Vertically Aligned Graphene-based Thermal Interface Material with High Thermal Conductivity. , 2018, , \cdot		5
116	Highly Thermal Conductive and Electrically Insulated Graphene Based Thermal Interface Material with Long-Term Reliability. , 2019, , .		5
117	Multiple growth of graphene from a pre-dissolved carbon source. Nanotechnology, 2020, 31, 345601.	2.6	5
118	Highly Thermally Conductive and Light Weight Copper/Graphene Film Laminated composites for Cooling Applications. , 2018, , .		4
119	Atomic Layer Deposition of Buffer Layers for the Growth of Vertically Aligned Carbon Nanotube Arrays. Nanoscale Research Letters, 2019, 14, 119.	5.7	4
120	Ontology for the anisotropic conductive adhesive interconnect technology for electronics packaging applications. , 2005, , .		3
121	Millimeterâ€wave ultraâ€wideband bandpass filter based on liquid crystal polymer substrates for automotive radar systems. Microwave and Optical Technology Letters, 2008, 50, 2276-2280.	1.4	3
122	Experimental Investigation and Micropolar Modelling of the Anisotropic Conductive Adhesive Flip-Chip Interconnection. Journal of Adhesion Science and Technology, 2008, 22, 1717-1731.	2.6	3
123	Molecular Gun Composed of Carbon Nanotube. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1716-1719.	0.4	3
124	Synthesis of a Graphene Carbon Nanotube Hybrid Film by Joule Self-Heating CVD for Thermal Applications. , 2018, , .		3
125	Comparison of isothermal mechanical fatigue properties of lead free solder joints and bulk solders. , 2003, , .		2
126	Integrated Capacitors and Resistors on Liquid Crystal Polymer Substrate. , 2005, , .		2

#	Article	IF	CITATIONS
127	Study on the Reliability of Nano-Structured Polymer-Metal Composite for Thermal Interface Material. ECS Transactions, 2011, 34, 991-995.	0.5	2
128	Characterization of CNT Enhanced Conductive Adhesives in Terms of Thermal Conductivity. ECS Transactions, 2012, 44, 1011-1017.	0.5	2
129	Effect of substrates and underlayer on CNT synthesis by plasma enhanced CVD. Advances in Manufacturing, 2013, 1, 236-240.	6.1	2
130	Characterization of nano-enhanced interconnect materials for fine pitch assembly. Soldering and Surface Mount Technology, 2014, 26, 12-17.	1.5	2
131	Development and characterization of graphene enhanced thermal conductive adhesives. , 2016, , .		2
132	Estimating the constitutive behaviour of sintered silver nanoparticles by nanoindentation. , 2018, , .		2
133	A Critical Assessment of Nano Enhanced Vapor Chamber Wick Structures for Electronics Cooling. , 2021, , .		2
134	Graphene Oxide and Nitrogen-Doped Graphene Coated Copper Nanoparticles in Water-Based Nanofluids for Thermal Management in Electronics. Journal of Nanofluids, 2022, 11, 125-134.	2.7	2
135	Implementation of the Internet course on conductive adhesives for electronics packaging. , 0, , .		1
136	Reliability investigations for encapsulated isotropic conductive adhesives flip chip interconnection. , 0, , .		1
137	Design of 50–70ÂGHz Planar Wideband Bandpass Filter on Liquid Crystal Polymer Substrate. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 183-189.	2.2	1
138	Design of Printed Monopole Antennas on Liquid Crystal Polymer Substrates. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 469.	2.2	1
139	Study on the bimodal filler influence on the effective thermal conductivity of thermal conductive adhesive. Microsystem Technologies, 2011, 17, 93-99.	2.0	1
140	Experimental study on electrical properties and stability of CNT bumps in high density interconnects. , 2013, , .		1
141	Critical Atomic-level Processing Technologies: Remote Plasma-enhanced Atomic Layer Deposition and Atomic Layer Etching. Micro and Nanosystems, 2018, 10, 76-83.	0.6	1
142	Effect of Boron Nitride Particle Geometry on the Thermal Conductivity of a Boron Nitride Enhanced Polymer Composite Film. , 2019, , .		1
143	Analysis of heat dissipation characteristics of three-dimensional graphene-carbon nanotube composite structures. , 2020, , .		1
144	Foreword - Fifth international IEEE symposium on high density packaging and component failure analysis (HDP'02). IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25, 251-252.	1.4	0

#	Article	IF	CITATIONS
145	Study on thermomechanical reliability of a tunable light modulator. Microelectronics Reliability, 2004, 44, 779-785.	1.7	0
146	Effect of encapsulation on OLED characteristics with anisotropic conductive adhesive. , 2008, , .		0
147	Flip Chip Assembly Using Carbon Nanotube Bumps and Anisotropic Conductive Adhesive Film. ECS Transactions, 2010, 27, 825-830.	0.5	0
148	Measurement of Dielectric Properties of Ultrafine BaTiO3 Using an Organic–Inorganic Composite Method. Journal of Electronic Materials, 2015, 44, 2300-2307.	2.2	0
149	Reliability study on high thermally conductive graphene film as heat spreader in electronics cooling applications. , 2018, , .		0
150	Effect of Fiber Concentration on Mechanical and Thermal Properties of a Solder Matrix Fiber Composite Thermal Interface Material. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1045-1053.	2.5	0
151	Graphene-coated copper nanoparticles for thermal conductivity enhancement in water-based nanofluid. , 2019, , .		0
152	Experimental Measurements of Thermal Performances of Carbon Nanomaterial with Vertical Structures in Hotspot Heat Dissipation *. , 2019, , .		0
153	Effect of space environment on the reliability of sintered silver nanoparticles reinforced by SiC particles. , 2019, , .		0
154	RF Properties of Carbon Nanotube / Copper Composite Through Silicon Via Based CPW Structure for 3D Integrated Circuits. , 2019, , .		0
155	Thermally Conductive Graphene Film/Indium/Aluminum Laminated Composite by Vacuum Assisted Hot-pressing. , 2020, , .		0
156	Exploring Graphene Coated Copper Nanoparticles as a multifunctional Nanofiller for Micro-Scaled Copper Paste. , 2021, , .		0
157	Thermal Analysis of An Au/Pt/Ti-Based Microheater. , 2021, , .		0
158	Synergistic Toughening of Graphene Films by Addition of Hydroxylated Carbon Nanotube. , 2021, , .		0
159	Fabrication and Characterization of Graphene/polyimide Composite Film. , 2021, , .		0
160	Highly Thermally Conductive Substrate Based on Graphene Film. , 2021, , .		0
161	Thermal Properties of Laser-induced Graphene Films Photothermally Scribed on Bare Polyimide Substrates. , 2021, , .		0
162	Thermal Properties of Laser Reduced Graphene Oxide Films. , 2021, , .		0

#	Article	IF	CITATIONS
163	Transparent heaters based on CVD grown few-layer graphene. Journal of Materials Science: Materials in Electronics, 2022, 33, 3586-3594.	2.2	ο