Claudia Belviso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science, 2018, 65, 109-135.	31.2	258
2	Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrasonics Sonochemistry, 2011, 18, 661-668.	8.2	96
3	Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journal of Cleaner Production, 2019, 208, 1131-1147.	9.3	92
4	Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water. Waste Management, 2010, 30, 839-847.	7.4	88
5	A and X-type zeolites synthesised from kaolinite at low temperature. Applied Clay Science, 2013, 80-81, 162-168.	5.2	80
6	Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud. Microporous and Mesoporous Materials, 2015, 202, 208-216.	4.4	75
7	Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials, 2018, 270, 24-29.	4.4	63
8	Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes, 2020, 8, 820.	2.8	58
9	The crystallisation of zeolite (X- and A-type) from fly ash at 25°C in artificial sea water. Microporous and Mesoporous Materials, 2012, 162, 115-121.	4.4	57
10	Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials, 2015, 212, 35-47.	4.4	52
11	Ultrasonic waves induce rapid zeolite synthesis in a seawater solution. Ultrasonics Sonochemistry, 2013, 20, 32-36.	8.2	50
12	Sodalite, faujasite and A-type zeolite from 2:1dioctahedral and 2:1:1 trioctahedral clay minerals. A singular review of synthesis methods through laboratory trials at a low incubation temperature. Powder Technology, 2017, 320, 483-497.	4.2	48
13	Mobility of trace elements in fly ash and in zeolitised coal fly ash. Fuel, 2015, 144, 369-379.	6.4	44
14	Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time?. Ultrasonics Sonochemistry, 2018, 43, 9-14.	8.2	44
15	Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. Journal of Environmental Management, 2014, 137, 16-22.	7.8	43
16	Immobilization of Ni by synthesising zeolite at low temperatures in a polluted soil. Chemosphere, 2010, 78, 1172-1176.	8.2	28
17	Fly ash as raw material for the synthesis of zeolite-encapsulated porphyrazine and metallo porphyrazine tetrapyrrolic macrocycles. Microporous and Mesoporous Materials, 2016, 236, 228-234.	4.4	27
18	Synthesis of zeolite from volcanic ash: Characterization and application for cesium removal. Microporous and Mesoporous Materials, 2021, 319, 111045.	4.4	26

CLAUDIA BELVISO

#	Article	IF	CITATIONS
19	Immobilization of Zn and Pb in Polluted Soil by In Situ Crystallization Zeolites from Fly Ash. Water, Air, and Soil Pollution, 2012, 223, 5357-5364.	2.4	25
20	EMT-type zeolite synthesized from obsidian. Microporous and Mesoporous Materials, 2016, 226, 325-330.	4.4	24
21	Effect of red mud added to zeolite LTA synthesis: Where is Fe in the newly-formed material?. Microporous and Mesoporous Materials, 2020, 298, 110058.	4.4	24
22	Synthesis of composite zeolite-layered double hydroxides using ultrasonic neutralized red mud. Microporous and Mesoporous Materials, 2020, 299, 110108.	4.4	22
23	Higher conversion rate of phenol alkylation with diethylcarbonate by using synthetic fly ash-based zeolites. Microporous and Mesoporous Materials, 2019, 284, 434-442.	4.4	20
24	Contrasting fault fluids along high-angle faults: a case study from Southern Apennines (Italy). Tectonophysics, 2016, 690, 206-218.	2.2	19
25	Influence of Synthesis Method on LTA Time-Dependent Stability. Molecules, 2018, 23, 2122.	3.8	14
26	Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: Batch and column tests. Journal of Environmental Chemical Engineering, 2022, 10, 107539.	6.7	14
27	Zeolite from Fly Ash: An Investigation on Metastable Behavior of the Newly Formed Minerals in a Medium-High-Temperature Range. Industrial & Engineering Chemistry Research, 2019, 58, 20472-20480.	3.7	13
28	Impact of Zeolite from Coal Fly Ash on Soil Hydrophysical Properties and Plant Growth. Agriculture (Switzerland), 2022, 12, 356.	3.1	12
29	Femtosecond laser surface texturing of polypropylene copolymer for automotive paint applications. Surface and Coatings Technology, 2021, 406, 126727.	4.8	11
30	Determining the role of the method used to recycle polypropylene waste materials from automotive industry using sepiolite and zeolite fillers. Journal of Material Cycles and Waste Management, 2021, 23, 965-975.	3.0	11
31	Evaluation for the Removal Efficiency of VOCs and Heavy Metals by Zeolites-Based Materials in the Wastewater: A Case Study in the Tito Scalo Industrial Area. Processes, 2020, 8, 1519.	2.8	8
32	Efficiency in Ofloxacin Antibiotic Water Remediation by Magnetic Zeolites Formed Combining Pure Sources and Wastes. Processes, 2021, 9, 2137.	2.8	7
33	Grain-Size Control on the Rare Earth Elements Distribution in the Late Diagenesis of Cretaceous Shales from the Southern Apennines (Italy). Journal of Chemistry, 2014, 2014, 1-11.	1.9	5
34	Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California. Minerals (Basel,) Tj ETQq0 0 0 rgE	3T /Qverloc	k 1 0 Tf 50 13
35	Obsidian as a Raw Material for Eco-Friendly Synthesis of Magnetic Zeolites. Materials, 2020, 13, 4633.	2.9	3

36	Structural and Mineralogical Characterization of a Fossil Hydrothermal System Located at the Outermost Front of the Southern Apennines Fold-and-Thrust Belt. Geofluids, 2019, 2019, 1-14.	0.7	7	2
----	--	-----	---	---

#	Article	IF	CITATIONS
37	Siliceous Fly Ash Utilization Conditions for Zeolite Synthesis. , 0, , .		2
38	Effect of H2O Activity on Zeolite Formation. Materials, 2020, 13, 4780.	2.9	1
39	Effects of fs pulsed laser ablation on synthetic zeolite targets. Applied Surface Science, 2022, 580, 152308.	6.1	1
40	Special Issue "Sustainable Remediation Processes Based on Zeolites― Processes, 2021, 9, 2153.	2.8	0