Wataru Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2361165/publications.pdf

Version: 2024-02-01

202 papers 4,463 citations

147801 31 h-index 58 g-index

207 all docs

 $\begin{array}{c} 207 \\ \\ \text{docs citations} \end{array}$

times ranked

207

5125 citing authors

#	Article	IF	CITATIONS
1	Fabrication and properties of reduction-resistant lead-free NaNbO ₃ –BaTiO ₃ piezoelectric ceramics. Japanese Journal of Applied Physics, 2021, 60, SFFC03.	1.5	4
2	Effect of Li ₂ CO ₃ as a Grain Growth Promoting Agent on Properties Improvement of Reduction-resistant BaTiO ₃ -based Lead-free Piezoelectric Ceramics. Journal of the Society of Powder Technology, Japan, 2020, 57, 88-96.	0.1	0
3	Fabrication of Reduction-resistant BaTiO ₃ -based Lead-free Piezoelectric Ceramics and Approach for Improving Their Properties. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 484-492.	0.2	O
4	Effects of Li2CO3 addition on the microstructural and electrical properties of lead-free piezoelectric (Ba,Ca)(Ti,Zr)O3 ceramics sintered in air or a reducing atmosphere. Japanese Journal of Applied Physics, 2019, 58, SLLCO4.	1.5	2
5	Cellulose-based molecularly imprinted red-blood-cell-like microparticles for the selective capture of cortisol. Carbohydrate Polymers, 2018, 193, 173-178.	10.2	11
6	Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3ceramics under controlled low oxygen partial pressure and their properties. Japanese Journal of Applied Physics, 2018, 57, 021501.	1.5	5
7	Organic–Inorganic Hybrid Hollow Nanoparticles Suppress Oxidative Stress and Repair Damaged Tissues for Treatment of Hepatic Fibrosis. Advanced Functional Materials, 2018, 28, 1706332.	14.9	6
8	Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis. Biomaterials, 2018, 156, 45-55.	11.4	26
9	Synthesis of titania nanoparticle-dispersed hybrid membranes from allyloxytitanium and phosphonic acid derivatives for fuel cell. Journal of Membrane Science, 2018, 563, 221-228.	8.2	4
10	Red Blood Cell-Shaped Microparticles with a Red Blood Cell Membrane Demonstrate Prolonged Circulation Time in Blood. ACS Biomaterials Science and Engineering, 2018, 4, 2729-2732.	5.2	17
11	Effect of degree of crystallographic texture on ferro―and piezoelectric properties of Ba _{0.85} Ca _{0.15} TiO ₃ piezoceramics. Journal of the American Ceramic Society, 2017, 100, 2098-2107.	3.8	33
12	Organic–Inorganic Hybrid Nanoparticles for Tracking the Same Cells Seamlessly at the Cellular, Tissue, and Whole Body Levels. ACS Biomaterials Science and Engineering, 2017, 3, 1129-1135.	5.2	7
13	Fabrication and properties of nonreducible lead-free piezoelectric Mn-doped (Ba,Ca)TiO 3 ceramics. Ceramics International, 2017, 43, S166-S171.	4.8	17
14	Synthesis of inorganic-organic hybrid membranes consisting of organotrisiloxane linkages and their fuel cell properties at intermediate temperatures. Polymer, 2017, 120, 264-271.	3.8	4
15	Metallic glass separators for fuel cells at intermediate temperatures. Materials Letters, 2017, 206, 87-90.	2.6	2
16	Theranostic Nanoparticles for MRI-Guided Thermochemotherapy: "Tight―Clustering of Magnetic Nanoparticles Boosts Relaxivity and Heat-Generation Power. ACS Biomaterials Science and Engineering, 2017, 3, 95-105.	5.2	41
17	Development of Reduction-Resistant Grain-Oriented BaTiO ₃ -Based Piezoelectric Ceramics. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2017, 25, 54-61.	0.0	O
18	Synthesis of inorganic-organic hybrid membranes consisting of triazole linkages formed by the azide-alkyne click reaction. Journal of Membrane Science, 2016, 517, 21-29.	8.2	8

#	Article	IF	CITATIONS
19	Smart Ferrofluid with Quick Gel Transformation in Tumors for MRIâ€Guided Local Magnetic Thermochemotherapy. Advanced Functional Materials, 2016, 26, 1708-1718.	14.9	72
20	Effect of texturing on polarization switching dynamics in ferroelectric ceramics. Applied Physics Letters, 2016, 108, .	3.3	32
21	Oneâ€Pot Synthesis of Dual Stimulusâ€Responsive Degradable Hollow Hybrid Nanoparticles for Imageâ€Guided Trimodal Therapy. Advanced Functional Materials, 2016, 26, 8613-8622.	14.9	38
22	Photocurrent enhancement of chemically synthesized Ag nanoparticle-embedded BiFeO3thin films. Japanese Journal of Applied Physics, 2016, 55, 10TA14.	1.5	12
23	One-pot synthesis of inorganic/organic hybrid membranes from organoalkoxysilane, hydroimidazole derivative, and cyclic sulfonic acid ester. Journal of Materials Science, 2016, 51, 3398-3407.	3.7	7
24	One-pot synthesis of proton-conductive inorganic–organic hybrid membranes from organoalkoxysilane and phosphonic acid derivatives. Journal of Membrane Science, 2016, 502, 133-140.	8.2	15
25	Crystal structure and solid state ionic conductivity of molecular crystal composed of lithium bis(trifluoromethanesulfonyl)amide and 1,2-dimethoxybenzene in a 1:1 molar ratio. Solid State Ionics, 2016, 285, 29-32.	2.7	10
26	Fabrication and Characterization of Lead-Free Grain-Oriented Reduction-Resistant ï¼^Ba,Caï¼%TiO ₃ Piezoelectric Ceramics. Journal of the Society of Powder Technology, Japan, 2016, 53, 824-831.	0.1	2
27	Proton-conductive inorganic–organic hybrid membranes synthesized from a trimethoxysilylmethylstyrene–fluorophenylvinyl acid copolymer. Journal of Membrane Science, 2015, 488, 166-172.	8.2	12
28	Enhancement of photoinduced electrical properties of Al-doped ZnO/BiFeO ₃ layered thin films prepared by chemical solution deposition. Japanese Journal of Applied Physics, 2015, 54, 10NA05.	1.5	8
29	Improvement of the Ferroelectric Properties of Chemically Synthesized Bi1/2Na1/2TiO3Thin Films via Mn Doping. Ferroelectrics, 2015, 479, 56-63.	0.6	4
30	Electrocaloric properties of PZT- and BaTiO $<$ inf $>$ 3 $<$ /inf $>$ - based ceramics and LiNbO $<$ inf $>$ 3 $<$ /inf $>$ crystals. , 2015, , .		1
31	Photoinduced electrical properties of Mn-doped BiFeO ₃ thin films prepared by chemical solution deposition. Japanese Journal of Applied Physics, 2014, 53, 09PA17.	1.5	12
32	Magnetically Responsive Smart Nanoparticles for Cancer Treatment with a Combination of Magnetic Hyperthermia and Remote-Control Drug Release. Theranostics, 2014, 4, 834-844.	10.0	186
33	In situ synthesis of manganese zinc ferrite nanoparticle/polymer hybrid nanocomposite from metal organics. Journal of Materials Science, 2014, 49, 5093-5099.	3.7	8
34	Transparent and self-standing manganese zinc ferrite nanoparticle/cellulose hybrid films. Materials Letters, 2014, 137, 491-494.	2.6	10
35	Precisely controlled supramolecular ionic conduction paths and their structure–conductivity relationships for lithium ion transport. CrystEngComm, 2014, 16, 10512-10518.	2.6	14
36	Crystal Structure and Solid-state Ionic Conductivity of Cyclic Sulfonylamide Salts with Cyano-substituted Quaternary Ammonium Cations. Chemistry Letters, 2014, 43, 108-110.	1.3	9

3

#	Article	IF	CITATIONS
37	In situ synthesis of transparent TiO2 nanoparticle/polymer hybrid. Journal of Materials Science, 2013, 48, 7503-7509.	3.7	13
38	One-pot synthesis of magnetic nanoparticles assembled on polysiloxane rod and their response to magnetic field. Colloid and Polymer Science, 2013, 291, 2837-2842.	2.1	5
39	Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sensors and Actuators A: Physical, 2013, 200, 60-67.	4.1	26
40	Structural Design of Ionic Conduction Paths in Molecular Crystals for Selective and Enhanced Lithium Ion Conduction. Chemistry - A European Journal, 2013, 19, 13554-13560.	3.3	18
41	Synthesis of patterned and transparent TiO2 nanoparticle/polymer hybrid films. Materials Letters, 2013, 107, 235-238.	2.6	5
42	Vibrational Energy Harvesting Using a Unimorph with PZT- or BT-Based Ceramics. Ferroelectrics, 2013, 446, 67-77.	0.6	8
43	Properties of flexible, transparent barium titanate nanoparticle/poly(2-hydroxyethyl methacrylate) hybrid. Journal of Materials Science, 2013, 48, 282-287.	3.7	2
44	Synthesis and properties of multiferroic 0.7BiFeO3â^'0.3BaTiO3 thin films by Mn doping. Ceramics International, 2013, 39, S451-S455.	4.8	14
45	Fabrication and Characterization of (100),(001)-Oriented Reduction-Resistant Lead-Free Piezoelectric (Ba,Ca)TiO ₃ Ceramics Using Platelike Seed Crystals. Japanese Journal of Applied Physics, 2013, 52, 09KD08.	1.5	23
46	Photocurrent Properties of BiFeO3Thin Films Prepared by Chemical Solution Deposition. Ferroelectrics, 2013, 453, 20-25.	0.6	3
47	Synthesis and characterization of multiferroic Pb(Zr,Ti)O ₃ CoFe ₂ O ₄ Pb(Zr,Ti)O ₃ layered composite thin films by chemical solution deposition. Journal of the Ceramic Society of Japan, 2013, 121, 614-618.	1.1	9
48	Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment. Theranostics, 2013, 3, 366-376.	10.0	291
49	Molecular Ionics in Supramolecular Assemblies with Channel Structures Containing Lithium Ions. Chemistry - A European Journal, 2012, 18, 15305-15309.	3.3	22
50	Synthesis and optical properties of ZrO2 with incorporated Ti nanoparticle/polymer hybrid. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	3
51	Combination of organic cation and cyclic sulfonylamide anion exhibiting plastic crystalline behavior in a wide temperature range. RSC Advances, 2012, 2, 8502.	3.6	22
52	Electrical Properties of Lead-Free Ferroelectric Mn-Doped K _{0.5} Na _{0.5} NbO ₃ –CaZrO ₃ Thin Films Prepared by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2012, 51, 09LA03.	1.5	7
53	Thermal and vibrational energy harvesting using PZT- and BT-based ceramics. , 2012, , .		4
54	In situ synthesis of cobalt ferrite nanoparticle/polymer hybrid from a mixed Fe–Co methacrylate for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2012, 324, 3158-3164.	2.3	11

#	Article	IF	Citations
55	Synthesis of field-responsive PbTiO3 particle/polymer hybrids from metal-organics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 408, 57-63.	4.7	2
56	Synthesis and 3D hierarchical organization of 2D structured iron oxide based on enzymatic structure, activity and thermostability. Materials Research Bulletin, 2012, 47, 3959-3964.	5.2	2
57	Ferroelectric properties of alkoxy-derived transparent BaTiO3 nanoparticle/polymer hybrid. Materials Letters, 2012, 89, 40-42.	2.6	9
58	Non-Centrosymmetric Coordination Polymer with a Highly Hindered Octahedral Copper Center Bridged by Mandelate. Inorganic Chemistry, 2012, 51, 4689-4693.	4.0	12
59	Synthesis of Er-doped ZnO nanoparticle/organic hybrid from metal-organics. Journal of Materials Science, 2012, 47, 5128-5133.	3.7	4
60	Electrical Properties of Lead-Free Ferroelectric Mn-Doped K _{0.5} Na _{0.5} NbO ₃ –CaZrO ₃ Thin Films Prepared by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2012, 51, 09LA03.	1.5	13
61	Synthesis of BiFeO\$_{3}\$â€"Bi\$_{0.5}\$Na\$_{0.5}\$TiO\$_{3}\$ Thin Films by Chemical Solution Deposition and Their Properties. Japanese Journal of Applied Physics, 2011, 50, 09NB04.	1.5	12
62	Formation of TiO2Nanostructures by Enzyme-Mediated Self-Assembly for the Destruction of Macrophages. Chemistry of Materials, 2011, 23, 3341-3347.	6.7	11
63	Plastic crystalline lithium salt with solid-state ionic conductivity and high lithium transport number. Chemical Communications, 2011, 47, 6311.	4.1	25
64	Spin-glass behavior of nanocrystalline multiferroic bismuth ferrite lead titanate. Journal of Materials Chemistry, 2011, 21, 781-788.	6.7	14
65	In situ synthesis of transparent Eu-doped ZnO particle/organic hybrid. Journal of the Ceramic Society of Japan, 2011, 119, 872-875.	1.1	0
66	Processing of highly oriented (K,Na)NbO3 thin films using a tailored metal-alkoxide precursor solution. Journal of the European Ceramic Society, 2011, 31, 2497-2503.	5.7	29
67	Nanomagnetism in nanocrystalline multiferroic bismuth ferrite lead titanate films. Journal of Nanoparticle Research, 2011, 13, 5603-5613.	1.9	6
68	Growth and properties of highly oriented lead-free Mn-doped NaNbO3–BaTiO3 piezoelectric thin films prepared by chemical solution deposition. Journal of Crystal Growth, 2011, 318, 879-883.	1.5	8
69	Synthesis of BiFeO ₃ –Bi _{0.5} Na _{0.5} TiO ₃ Thin Films by Chemical Solution Deposition and Their Properties. Japanese Journal of Applied Physics, 2011, 50, 09NB04.	1.5	13
70	Synthesis and properties of BiScO3-PbTiO3 powders and thin films using metal-organic precursor solutions. Journal of the Ceramic Society of Japan, 2010, 118, 631-635.	1.1	4
71	Synthesis and properties of perovskite BiFeO3-K0.5Na0.5NbO3 ceramics by solid-state reaction. Journal of the Ceramic Society of Japan, 2010, 118, 701-705.	1.1	9
72	Synthesis of BaTiO3 nanoparticle/poly(2-hydroxyethyl methacrylate) hybrid nanofibers via electrospinning. Composites Science and Technology, 2010, 70, 492-497.	7.8	19

#	Article	IF	Citations
73	Optical properties of transparent barium titanate nanoparticle/polymer hybrid synthesized from metal alkoxides. Journal of Nanoparticle Research, 2010, 12, 1933-1943.	1.9	14
74	Synthesis of Transparent and Fieldâ€Responsive BaTiO ₃ Particle/Organosiloxane Hybrid Fluid. Angewandte Chemie - International Edition, 2010, 49, 4902-4906.	13.8	20
75	Proton conductive inorganic–organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell. Journal of Power Sources, 2010, 195, 5882-5888.	7.8	33
76	Lead-free piezoelectric thin films of Mn-doped NaNbO3–BaTiO3 fabricated by chemical solution deposition. Thin Solid Films, 2010, 518, 4256-4260.	1.8	22
77	Electrosprayed Synthesis of Redâ€Bloodâ€Cellâ€Like Particles with Dual Modality for Magnetic Resonance and Fluorescence Imaging. Small, 2010, 6, 2384-2391.	10.0	59
78	Electrosprayed Synthesis of Red-Blood-Cell-Like Particles with Dual Modality for Magnetic Resonance and Fluorescence Imaging. Small, 2010, 6, n/a-n/a.	10.0	1
79	Preparation and Properties of Bi0.5Na0.5TiO3Thin Films by Chemical Solution Deposition. Ferroelectrics, 2010, 405, 204-210.	0.6	10
80	Improvement in Ferroelectric Properties of Chemically Synthesized Lead-Free Piezoelectric (K,Na)(Nb,Ta)O ₃ Thin Films by Mn Doping. Japanese Journal of Applied Physics, 2010, 49, 09MA04.	1.5	34
81	High-Frequency, Magnetic-Field-Responsive Drug Release from Magnetic Nanoparticle/Organic Hybrid Based on Hyperthermic Effect. ACS Applied Materials & Interfaces, 2010, 2, 1903-1911.	8.0	230
82	One-Pot Biofunctionalization of Magnetic Nanoparticles via Thiolâ ⁻ 'Ene Click Reaction for Magnetic Hyperthermia and Magnetic Resonance Imaging. Chemistry of Materials, 2010, 22, 3768-3772.	6.7	81
83	Fabrication of Ferrimagnetic Ferrite Nanocrystal Clusters by a Double-Step Templated Reaction Using in Situ Polymerization of Phenylalanine. Crystal Growth and Design, 2010, 10, 2350-2354.	3.0	2
84	Synthesis and field-responsive properties of SrTiO3 nanoparticle/polymer hybrid. Journal of Materials Research, 2009, 24, 2221-2228.	2.6	6
85	Effects of BaTiO ₃ Content and Mn Doping on Ferroelectric Properties of NaNbO ₃ –BaTiO ₃ Thin Films Prepared by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2009, 48, 09KA08.	1.5	21
86	Properties of highly oriented K(Sr,Ba)2Nb5O15 thin films derived from a metal-alkoxide precursor solution. Materials Chemistry and Physics, 2009, 113, 558-561.	4.0	5
87	Electrical and magnetic properties of Mn-doped 0.7BiFeO3–0.3PbTiO3 thin films prepared under various heating atmospheres. Materials Chemistry and Physics, 2009, 116, 536-541.	4.0	46
88	Synthesis of proton conductive inorganic–organic hybrid membranes from organoalkoxysilane and hydroxyalkylphosphonic acid. Journal of Membrane Science, 2009, 326, 701-707.	8.2	30
89	Synthesis of proton conductive membranes based on inorganic–organic hybrid structure bound with phosphonic acid. Electrochimica Acta, 2009, 55, 298-304.	5.2	15
90	Magnetic and rheological properties of monodisperse Fe3O4 nanoparticle/organic hybrid. Journal of Magnetism and Magnetic Materials, 2009, 321, 450-457.	2.3	41

#	Article	IF	Citations
91	Size-Controlled Submicrometer Hollow Spheres Constituted of ZnO Nanoplates from Layered Zinc Hydroxide. Inorganic Chemistry, 2009, 48, 8544-8549.	4.0	11
92	Chemoselective Synthesis of Folic Acidâ^'Functionalized Magnetite Nanoparticles via Click Chemistry for Magnetic Hyperthermia. Chemistry of Materials, 2009, 21, 1318-1325.	6.7	98
93	Effect of PAA-NH ₄ Dispersant on Dispersibility of Aqueous Pb(Zr, Ti)O ₃ Slurries and Piezoelectric Properties of Resultant Sintered Bodies. Key Engineering Materials, 2009, 421-422, 103-106.	0.4	O
94	One-Pot Synthesis and Morphology Control of Spinel Ferrite (MFe ₂ O ₄ , M =) Tj ETQq0 C 2009, 9, 1889-1893.	0 o rgBT /C 3.0	overlock 10 1 32
95	Effects of SrTiO3 content and Mn doping on dielectric and magnetic properties of BiFeO3-SrTiO3 ceramics. Journal of the Ceramic Society of Japan, 2009, 117, 939-943.	1.1	24
96	Synthesis of proton conductive inorganic–organic hybrid membranes through copolymerization of dimethylethoxyvinylsilane with vinylphosphonic acid. Journal of Sol-Gel Science and Technology, 2008, 46, 107-115.	2.4	12
97	Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field. Journal of Nanoparticle Research, 2008, 10, 1203-1208.	1.9	0
98	Proton-conductive sol–gel membranes from phenylvinylphosphonic acid and organoalkoxysilanes with different functionalities. Journal of Membrane Science, 2008, 311, 182-191.	8.2	18
99	Synthesis and dielectric properties of (Ba,Ca)(Zr,Ti)O3 thin films using metal-organic precursor solutions. Thin Solid Films, 2008, 516, 8408-8413.	1.8	31
100	Electronic structure of multiferroic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BiFeO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>1×3£2/mml:</td><td>m81> </td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	1×3£2/mml:	m 81 >
101	Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia. Journal of Materials Research, 2008, 23, 3415-3424.	2.6	21
102	Synthesis of Highly Transparent Lithium Ferrite Nanoparticle/Polymer Hybrid Self-standing Films Exhibiting Faraday Rotation in the Visible Region. Journal of Physical Chemistry C, 2008, 112, 14255-14261.	3.1	24
103	Valence State of Mn-Doped BiFeO ₃ –BaTiO ₃ Ceramics Probed by Soft X-ray Absorption Spectroscopy. Applied Physics Express, 2008, 1, 011502.	2.4	55
104	Effect of Mn Substitution for Multiferroic BiFeO ₃ Probed by High-Resolution Soft-X-ray Spectroscopy. Japanese Journal of Applied Physics, 2008, 47, 7570.	1.5	38
105	Synthesis of SrTiO ₃ nanoparticle/polymer composite film using direct current field. Journal of Materials Research, 2008, 23, 127-132.	2.6	3
106	Impedance Spectroscopy Structural Analysis: Ca-Dopant Segregation in (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3. Japanese Journal of Applied Physics, 2008, 47, 2176-2181.	1.5	9
107	Ferroelectric properties of chemically synthesized perovskite BiFeO3–PbTiO3 thin films. Journal of Applied Physics, 2008, 104, .	2.5	64
108	Preparation and Characterization of Perovskite BiFeO <inf>3</inf> -BaTiO <inf>3</inf> Ceramics. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0

#	Article	IF	Citations
109	Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. Journal of Materials Research, 2007, 22, 1967-1974.	2.6	7
110	Ferroelectric Properties of Chemically Synthesized Perovskite BiFeO $<$ inf $>$ 3 $<$ /inf $>$ -PbTiO $<$ inf $>$ 3 $<$ /inf $>$ Thin Films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
111	Fabrication and Characterization of BiFeO ₃ -BaTiO ₃ Ceramics by Solid State Reaction. Ferroelectrics, 2007, 356, 19-23.	0.6	86
112	Fabrication and Properties of BiFeO ₃ -KNbO ₃ Ceramics. Ferroelectrics, 2007, 356, 180-184.	0.6	13
113	In situ synthesis of lithium ferrite nanoparticle/polymer hybrid. Journal of Materials Research, 2007, 22, 974-981.	2.6	6
114	Chemical Solution Processing and Properties of (Bi <inf>1/2</inf> Na <inf>1/2</inf>)TiO <inf>3</inf> Thin Films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
115	Chemical Processing and Characterization of Ferroelectric (K,Na)NbO ₃ Thin Films. Japanese Journal of Applied Physics, 2007, 46, 6971.	1.5	90
116	Lead-Free Piezoelectric (K,Na)NbO3Thin Films Derived from Metal Alkoxide Precursors. Japanese Journal of Applied Physics, 2007, 46, L311-L313.	1.5	120
117	Synthesis of organosiloxane-based inorganic/organic hybrid membranes with chemically bound phosphonic acid for proton-conductors. Electrochimica Acta, 2007, 52, 5924-5931.	5.2	39
118	Fabrication and characterization of intergrown Bi4Ti3O12-based thin films using a metal-organic precursor solution. Journal of the European Ceramic Society, 2007, 27, 3765-3768.	5.7	6
119	Chemical solution processing and characterization of Ba(Zr,Ti)O3/LaNiO3 layered thin films. Journal of Sol-Gel Science and Technology, 2007, 42, 213-220.	2.4	12
120	Synthesis of transparent BaTiO3 nanoparticle/polymer hybrid. Journal of Nanoparticle Research, 2007, 9, 225-232.	1.9	17
121	Synthesis of proton-conductive sol–gel membranes from trimethoxysilylmethylstyrene and phenylvinylphosphonic acid. Journal of Membrane Science, 2007, 303, 43-53.	8.2	25
122	Preparation and Properties of BiFeO3-PbTiO3 Thin Films by Chemical Solution Deposition. Transactions of the Materials Research Society of Japan, 2007, 32, 43-46.	0.2	1
123	Fabrication and properties of Er-substituted BaNb2O6 thin films through a chemical route. Journal of Alloys and Compounds, 2006, 408-412, 538-542.	5.5	14
124	Fabrication and properties of perovskite Pb(Yb,Nb)O3–PbTiO3 thin films through a sol–gel process. Journal of Alloys and Compounds, 2006, 408-412, 543-546.	5.5	13
125	Synthesis and properties of ferroelectric Si-doped (Bi, Nd)4Ti3O12 thin films by chemical solution deposition. Journal of Electroceramics, 2006, 17, 293-297.	2.0	8
126	In SituSynthesis of Nanosized ZnO Particle/Organic Hybrids. Japanese Journal of Applied Physics, 2006, 45, 6033-6038.	1.5	3

#	Article	IF	Citations
127	Field-assisted synthesis of BaTiO3 particle/polyvinylbutyral composite film. Journal of Materials Research, 2006, 21, 1843-1848.	2.6	2
128	In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. Journal of Materials Research, 2006, 21, 1336-1341.	2.6	4
129	Synthesis and Characterization of BiFeO3–PbTiO3Thin Films through Metalorganic Precursor Solution. Japanese Journal of Applied Physics, 2006, 45, 7315-7320.	1.5	58
130	Fabrication of Ferroelectric Self-assembled Fluorinated Polyether Monolayer on Hydrogen-terminated Si(111) Surface. Chemistry Letters, 2005, 34, 600-601.	1.3	1
131	Processing and properties of ferroelectric (Bi, La)4(Ti, Ge)3O12 thin films by chemical solution deposition. Journal of the European Ceramic Society, 2005, 25, 2305-2308.	5.7	11
132	Orientation control of chemical solution deposited LaNiO3 thin films. Thin Solid Films, 2005, 491, 78-81.	1.8	17
133	Processing and Piezoelectric Properties of Lead-Free (K,Na) (Nb,Ta) O3 Ceramics. Journal of the American Ceramic Society, 2005, 88, 1190-1196.	3.8	436
134	Chemical solution processing and properties of Sr2FeMoO6 thin films. Journal of Magnetism and Magnetic Materials, 2005, 295, 230-234.	2.3	10
135	In Situ Synthesis of Field-responsive Nanocrystalline BaTiO3 Particles Modified with Functional Organics. Journal of Nanoparticle Research, 2005, 7, 633-640.	1.9	5
136	Synthesis and Catalytic Properties of the Electrochemical NOxReduction System. Catalysis Letters, 2005, 103, 271-275.	2.6	0
137	Synthesis and Properties of Intergrown Bi4Ti3O12-SrBi4Ti4O15Ferroelectric Thin Films by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2005, 44, 6952-6956.	1.5	11
138	In situ Synthesis of Nickel Ferrite Nanoparticle/organic Hybrid. Journal of Materials Research, 2005, 20, 1590-1596.	2.6	3
139	Synthesis of Fe-doped ZnO Particle/polymer Hybrid from Metalorganics. Journal of Materials Research, 2005, 20, 1470-1475.	2.6	9
140	Fabrication and Properties of Ge-Doped (Bi,Nd)4Ti3O12Thin Films by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2004, 43, 6599-6603.	1.5	8
141	Synthesis of ZnO particle–polymer hybrid from zinc–organics. Journal of Materials Research, 2004, 19, 651-656.	2.6	7
142	In situ synthesis of nanocrystalline BaTiO3 particle–polymer hybrid. Journal of Materials Research, 2004, 19, 3290-3297.	2.6	37
143	Preparation and Properties of V-Doped (Bi,Nd)4Ti3O12 Ferroelectric Thin Films by Chemical Solution Deposition Method. Integrated Ferroelectrics, 2004, 62, 233-241.	0.7	4
144	Preparation and Properties of Bi4?xNdxTi3O12 Thin Films by Chemical Solution Deposition. Journal of Electroceramics, 2004, 13, 339-343.	2.0	12

#	Article	IF	CITATIONS
145	Effects of Bi2O3 seeding layer on crystallinity and electrical properties of CSD-derived Bi4â^'xLaxTi3O12 ferroelectric thin films. Journal of the European Ceramic Society, 2004, 24, 1621-1624.	5.7	6
146	Novel electro-rheological nanocrystalline dielectric particles modified with or embedded in organics. Journal of the European Ceramic Society, 2004, 24, 1911-1917.	5.7	5
147	In-Situ Processing of Laminated Ceramic Composite for Electrochemical NOx Reduction System. Journal of the Ceramic Society of Japan, 2004, 112, 82-87.	1.3	4
148	In Situ Processing of Nano Crystalline Oxide Particles/Polymer Hybrid. Journal of Sol-Gel Science and Technology, 2003, 26, 35-41.	2.4	16
149	Processing of Novel Strontium Titanateâ€Based Thinâ€Film Varistors by Chemical Solution Deposition. Journal of the American Ceramic Society, 2003, 86, 99-104.	3.8	12
150	Electromechanical properties of Nd-doped Bi4Ti3O12 films: A candidate for lead-free thin-film piezoelectrics. Applied Physics Letters, 2003, 82, 1760-1762.	3.3	170
151	Processing and Properties of Rare Earth Ion-Doped Bismuth Titanate Thin Films by Chemical Solution Deposition method. Japanese Journal of Applied Physics, 2003, 42, 5222-5226.	1.5	42
152	Chemical Solution Processing and Properties of (Bi,Nd)4Ti3O12Ferroelectric Thin Films. Japanese Journal of Applied Physics, 2003, 42, 1660-1664.	1.5	21
153	Synthesis of (Bi,Nd)4(Ti,Ge)3O12Thin Films by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2003, 42, L1384-L1386.	1.5	9
154	Properties of Highly Oriented Rare-Earth-Ion-Substituted BaNb2O6Thin Films Synthesized by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2003, 42, 5913-5917.	1.5	4
155	Excimer UV Processing of (Bi,Nd)4Ti3O12Ferroelectric Thin Films by Chemical Solution Deposition Method. Japanese Journal of Applied Physics, 2003, 42, 5981-5985.	1.5	13
156	Synthesis of a KNbO3 particle/polymer hybrid from metalorganics. Journal of Materials Research, 2003, 18, 1679-1685.	2.6	17
157	Dispersibility of BaTiO3 Aqueous Slurries with Poly Ammonium Acrylate Based Dispersant. Journal of the Ceramic Society of Japan, 2003, 111, 811-814.	1.3	14
158	Preparation and Properties of Bi4-xLaxTi3O12Ferroelectric Thin Films Using Excimer UV Irradiation. Japanese Journal of Applied Physics, 2002, 41, 6814-6819.	1.5	23
159	Chemical Solution Processing and Characterization of Highly Oriented (Ba,Ln)Nb2O6[Ln: La, Gd, Dy] Thin Films. Japanese Journal of Applied Physics, 2002, 41, 6647-6652.	1.5	3
160	DeNOx Properties of Barium Hexaaluminogallates Journal of the Ceramic Society of Japan, 2002, 110, 1-5.	1.3	1
161	Chemical Processing and Properties of (Sr,Ca) 2 (Nb,Ta) 2 O 7 Thin Films. Integrated Ferroelectrics, 2002, 45, 49-57.	0.7	2
162	Synthesis and Magneto-mechanical Properties of Ce-TZP/La M-Type Hexaferrite Composite. Journal of the American Ceramic Society, 2002, 85, 2212-2216.	3.8	7

#	Article	IF	Citations
163	Growth of highly oriented LiNbO3 thin films through structure controlled metal alkoxide precursor solution. Journal of Crystal Growth, 2002, 237-239, 2091-2097.	1.5	13
164	Effects of Transitionâ€Metal Substitution on the Catalytic Properties of Barium Hexaaluminogallate. Journal of the American Ceramic Society, 2002, 85, 909-914.	3.8	3
165	Chemical solution processing and properties of tungsten bronze (ba,la)nb2o6thin films. Integrated Ferroelectrics, 2001, 36, 191-200.	0.7	1
166	Chemical solution processing of sr2(nb,ta)207 thin films. Integrated Ferroelectrics, 2001, 36, 275-284.	0.7	2
167	Synthesis and Properties of Highly Oriented (Sr, Ba)(Nb, Ta)2O6Thin Films by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2001, 40, 5599-5604.	1.5	21
168	Synthesis of Conductive LaNiO3Thin Films by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2001, 40, 6049-6054.	1.5	21
169	Synthesis and Processing of Barium Hexaaluminogallates. Journal of the American Ceramic Society, 2001, 84, 1433-1438.	3.8	6
170	Synthesis of transparent magnetic particle/organic hybrid film using iron–organics. Journal of Materials Research, 2000, 15, 2114-2120.	2.6	22
171	Co ²⁺ â€Substitution Effect in Ceâ€₹ZP/La Mâ€ŧype Hexaferrite Composites. Journal of the American Ceramic Society, 2000, 83, 281-286.	3.8	9
172	Chemical Solution Processing and Characterization of La Doped Tungsten Bronze KO.4(PbO.6BaO.4)O.8Nb2O6Thin Films. Japanese Journal of Applied Physics, 1999, 38, 5442-5447.	1.5	2
173	Dielectric and Pyroelectric Properties of Alkoxy-Derived KTa0.35Nb0.65O3Thin Film. Japanese Journal of Applied Physics, 1999, 38, 5953-5957.	1.5	4
174	Synthesis of magnetic particle/organic hybrid from metalorganic compounds. Journal of Materials Research, 1999, 14, 2855-2860.	2.6	21
175	Synthesis of Sr2KNb5O15 Thin Films by Chemical Solution Deposition Method. Journal of Materials Research, 1999, 14, 1495-1502.	2.6	1
176	Title is missing!. Journal of Sol-Gel Science and Technology, 1999, 16, 65-75.	2.4	3
177	UV Processing of Oriented KTa0.50Nb0.50O3 Thin Films Journal of the Ceramic Society of Japan, 1999, 107, 1032-1036.	1.3	7
178	Synthesis of Al3+-Substituted La M-Type Hexaferrite for In Situ Ceramic Composite Processing Journal of the Ceramic Society of Japan, 1999, 107, 215-221.	1.3	7
179	In Situ Processing of Y-TZP/M-Type Hexaferrite Composite Journal of the Ceramic Society of Japan, 1999, 107, 796-800.	1.3	10
180	Effect of Slurry Characters of Titanium Nitride on Forming and Sintering Behaviors Journal of the Ceramic Society of Japan, 1999, 107, 968-972.	1.3	5

#	Article	IF	Citations
181	Ultraviolet patterning of KTiOPO4 thin films through metallo-organics. Journal of Materials Research, 1999, 14, 222-227.	2.6	4
182	Synthesis of PbTiO3/organic hybrid from metalorganic compounds. Journal of Materials Research, 1999, 14, 3275-3280.	2.6	23
183	In Situ Formation of Ce-TZP/Ba Hexaaluminate Composites Journal of the Ceramic Society of Japan, 1999, 107, 814-819.	1.3	16
184	Processing of Oriented K(Ta,Nb)O ₃ Films Using Chemical Solution Deposition. Journal of the American Ceramic Society, 1999, 82, 1463-1466.	3.8	31
185	Synthesis of Oriented Ba ₂ NaNb ₅ O ₁₅ (BNN) Thin Films from an Alkoxyâ€derived Precursor. Journal of the American Ceramic Society, 1999, 82, 2672-2676.	3.8	7
186	Preparation and characterization of K(Sr0.5Ba0.5)2Nb5O15 thin films by sol-gel method. Integrated Ferroelectrics, 1998, 20, 117-128.	0.7	2
187	Synthesis of Highly Oriented Tungsten Bronze K(Pb0.6Ba0.4)2Nb5O15Thin Films by the Chemical Solution Deposition Method. Japanese Journal of Applied Physics, 1998, 37, 5215-5219.	1.5	8
188	Chemical Processing of Potassiumâ€Substituted Strontium Barium Niobate Thin Films through Metalloâ€organics. Journal of the American Ceramic Society, 1998, 81, 2692-2698.	3.8	18
189	Inâ€Situ Formation of Ceâ€₹ZPâ€Mâ€₹ype Hexaferrite Composites. Journal of the American Ceramic Society, 1998, 81, 2965-2970.	3.8	15
190	Preparation and Properties of K(Sr0.75Ba0.25)2Nb5O15Thin Films by Chemical Solution Deposition Method. Japanese Journal of Applied Physics, 1997, 36, 5930-5934.	1.5	11
191	Effect of Phosphorus Sources on Synthesis of KTiOPO4 Thin Films by Solâ^'Gel Method. Chemistry of Materials, 1997, 9, 2174-2178.	6.7	13
192	Synthesis of Ba ₂ NaNb ₅ O ₁₅ Powders and Thin Films Using Metal Alkoxides. Journal of the American Ceramic Society, 1997, 80, 1767-1772.	3.8	8
193	Alkoxyâ€Derived KTiOPO ₄ (KTP) Fibers. Journal of the American Ceramic Society, 1997, 80, 2437-2440.	3.8	7
194	Processing and ultraviolet patterning of LiNbO3 epitaxial films from metallorganic precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 117-122.	3.5	10
195	Synthesis of Nd:YVO4Thin Films by a Sol-Gel Method. Journal of the American Ceramic Society, 1996, 79, 3041-3044.	3.8	33
196	Synthesis of Lead Barium Niobate Powders and Thin Films by the Sol-Gel Method. Journal of the American Ceramic Society, 1996, 79, 889-894.	3.8	19
197	Synthesis of Strontium Barium Niobate Thin Films through Metal Alkoxide. Journal of the American Ceramic Society, 1996, 79, 2283-2288.	3.8	57
198	Synthesis of α–Fe2O3 particle/oligomer hybrid material. Journal of Materials Research, 1996, 11, 475-482.	2.6	32

#	Article	IF	CITATIONS
199	Processing and characterization of Pb(Mg, Nb)O3-PbTiO3 thin films from metal alkoxide-derived gels. Journal of Sol-Gel Science and Technology, 1994, 2, 329-334.	2.4	12
200	Synthesis and Properties of Mn-Doped (Bi _{0.5})TiO ₃ Thin Films by Chemical Solution Deposition. Key Engineering Materials, 0, 582, 59-62.	0.4	1
201	Ferroelectric Properties Improvement of Mn-Doped 0.7BiFeO ₃ -0.3BaTiO ₃ Thin Films Fabricated by Chemical Solution Deposition. Key Engineering Materials, 0, 566, 159-162.	0.4	O
202	Electrical Properties of Ce0.8Gd0.2O1.9 Ceramics Prepared by an Aqueous Process. Ceramic Engineering and Science Proceedings, 0, , 95-103.	0.1	0