Moshi Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360891/publications.pdf

Version: 2024-02-01

		117625	133252
58	4,836	34	59
papers	citations	h-index	g-index
(2	(2	(2)	6161
63	63	63	6161
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial Fission and Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured Fibroblasts. Cell Metabolism, 2015, 21, 273-286.	16.2	398
2	Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 2015, 350, aad2459.	12.6	342
3	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	28.9	306
4	How Mitochondrial Dynamism Orchestrates Mitophagy. Circulation Research, 2015, 116, 1835-1849.	4.5	247
5	Abrogating Mitochondrial Dynamics in Mouse Hearts Accelerates Mitochondrial Senescence. Cell Metabolism, 2017, 26, 872-883.e5.	16.2	228
6	Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 2020, 180, 984-1001.e22.	28.9	206
7	Epigenetic Modifications in Cardiovascular Aging and Diseases. Circulation Research, 2018, 123, 773-786.	4.5	180
8	A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 2020, 11, 740-770.	11.0	179
9	Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 2015, 117, 346-351.	4.5	172
10	Super-Suppression of Mitochondrial Reactive Oxygen Species Signaling Impairs Compensatory Autophagy in Primary Mitophagic Cardiomyopathy. Circulation Research, 2014, 115, 348-353.	4.5	163
11	A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell, 2021, 56, 383-397.e8.	7.0	145
12	Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Research, 2021, 49, D825-D830.	14.5	140
13	Mitoconfusion: Noncanonical Functioning of Dynamism Factors in Static Mitochondria of the Heart. Cell Metabolism, 2015, 21, 195-205.	16.2	105
14	Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.	5.6	104
15	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	14.5	99
16	A single-cell transcriptomic landscape of primate arterial aging. Nature Communications, 2020, 11, 2202.	12.8	95
17	A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nature Cell Biology, 2021, 23, 1314-1328.	10.3	91
18	Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein and Cell, 2019, 10, 417-435.	11.0	88

#	Article	IF	Citations
19	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	12.0	88
20	SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein and Cell, 2020, 11, 483-504.	11.0	85
21	Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nature Communications, 2019, 10, 3329.	12.8	82
22	Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Reports, 2019, 26, 3643-3656.e7.	6.4	81
23	A genome-wide CRISPR-based screen identifies <i>KAT7</i> as a driver of cellular senescence. Science Translational Medicine, 2021, 13, .	12.4	79
24	FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell, 2019, 24, 447-461.e8.	11.1	78
25	SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Research, 2021, 49, 4203-4219.	14.5	74
26	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	12.0	67
27	Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. Journal of Molecular and Cellular Cardiology, 2015, 78, 123-128.	1.9	62
28	Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 2018, 9, 333-350.	11.0	56
29	ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Research, 2020, 48, 6001-6018.	14.5	54
30	Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell, 2022, 29, 990-1005.e10.	11.1	53
31	Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Reports, 2020, 32, 107870.	6.4	51
32	Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery, 2022, 8, 6.	6.7	50
33	Low-dose quercetin positively regulates mouse healthspan. Protein and Cell, 2019, 10, 770-775.	11.0	41
34	Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein and Cell, 2019, 10, 249-271.	11.0	41
35	A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review, 2021, 8, nwaa127.	9.5	37
36	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2, 303-316.	11.6	36

#	Article	IF	Citations
37	Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein and Cell, 2019, 10, 649-667.	11.0	35
38	Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nature Communications, 2022, 13, 1757.	12.8	35
39	Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nature Communications, 2022, 13 , .	12.8	35
40	Mitofusin 2 Is Essential for IP3-Mediated SR/Mitochondria Metabolic Feedback in Ventricular Myocytes. Frontiers in Physiology, 2019, 10, 733.	2.8	30
41	Basic and translational aging research in China: present and future. Protein and Cell, 2019, 10, 476-484.	11.0	27
42	FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein and Cell, 2021, 12, 145-151.	11.0	27
43	Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects. Journal of Molecular and Cellular Cardiology, 2015, 80, 71-80.	1.9	26
44	Deciphering primate retinal aging at single-cell resolution. Protein and Cell, 2021, 12, 889-898.	11.0	26
45	Mitochondrial regulation of cardiac aging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1853-1864.	3.8	25
46	Combined cardiomyocyte PKCδ and PKCε gene deletion uncovers their central role in restraining developmental and reactive heart growth. Science Signaling, 2015, 8, ra39.	3.6	24
47	Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nature Communications, 2022, 13, 931.	12.8	24
48	CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells. Protein and Cell, 2018, 9, 945-965.	11.0	20
49	Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein and Cell, 2022, 13, 532-539.	11.0	18
50	Treating osteoarthritis via gene therapy with rejuvenation factors. Gene Therapy, 2020, 27, 309-311.	4.5	14
51	DJ-1 is dispensable for human stem cell homeostasis. Protein and Cell, 2019, 10, 846-853.	11.0	13
52	OUP accepted manuscript. Nucleic Acids Research, 2021, , .	14.5	9
53	Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein and Cell, 2022, 13, 615-622.	11.0	9
54	Low-dose chloroquine treatment extends the lifespan of aged rats. Protein and Cell, 2022, 13, 454-461.	11.0	9

#	Article	IF	CITATIONS
55	ALKBH1 deficiency leads to loss of homeostasis in human diploid somatic cells. Protein and Cell, 2020, 11, 688-695.	11.0	8
56	mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells. Protein and Cell, 2022, 13, 676-682.	11.0	6
57	Mesenteric lymph system constitutes the second route in gut–liver axis and transports metabolism-modulating gut microbial metabolites. Journal of Genetics and Genomics, 2022, 49, 612-623.	3.9	3
58	Age-related cardiopathies gene editing. Aging, 2019, 11, 1327-1328.	3.1	1