Yehu Moran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360421/publications.pdf

Version: 2024-02-01

218677 243625 2,322 50 26 44 h-index citations g-index papers 67 67 67 2390 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional characterization of a â€~plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis. ELife, 2022, 11, .	6.0	14
2	Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo, 2021, 12, 1.	3.2	25
3	Conservation and turnover of miRNAs and their highly complementary targets in early branching animals. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203169.	2.6	9
4	The new COST Action European Venom Network (EUVEN)â€"synergy and future perspectives of modern venomics. GigaScience, 2021, 10, .	6.4	6
5	Functional Characterization of the Cnidarian Antiviral Immune Response Reveals Ancestral Complexity. Molecular Biology and Evolution, 2021, 38, 4546-4561.	8.9	18
6	Transposons Increase Transcriptional Complexity: The Good Parasite?. Trends in Genetics, 2021, 37, 606-607.	6.7	2
7	Toxin-like neuropeptides in the sea anemone <i>Nematostella</i> unravel recruitment from the nervous system to venom. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27481-27492.	7.1	24
8	NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Reports, 2020, 30, 4473-4489.e5.	6.4	44
9	TATA Binding Protein (TBP) Promoter Drives Ubiquitous Expression of Marker Transgene in the Adult Sea Anemone Nematostella vectensis. Genes, 2020, 11, 1081.	2.4	10
10	Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian. BMC Biology, 2020, 18, 121.	3.8	18
11	Unravelling the developmental and functional significance of an ancient Argonaute duplication. Nature Communications, 2020, $11,6187$.	12.8	17
12	Initial Virome Characterization of the Common Cnidarian Lab Model Nematostella vectensis. Viruses, 2020, 12, 218.	3.3	6
13	The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP). Toxicon: X, 2019, 4, 100016.	2.9	21
14	The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella. Molecular Biology and Evolution, 2019, 36, 2001-2012.	8.9	48
15	Too Many False Targets for MicroRNAs: Challenges and Pitfalls in Prediction of miRNA Targets and Their Gene Ontology in Model and Nonâ€model Organisms. BioEssays, 2019, 41, e1800169.	2.5	56
16	Dispersal and speciation: The cross Atlantic relationship of two parasitic cnidarians. Molecular Phylogenetics and Evolution, 2018, 126, 346-355.	2.7	6
17	Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biology, 2018, 16, 108.	3.8	62
18	The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis. PLoS Genetics, 2018, 14, e1007590.	3.5	21

#	Article	IF	Citations
19	Dynamics of venom composition across a complex life cycle. ELife, 2018, 7, .	6.0	83
20	The evolutionary origin of plant and animal microRNAs. Nature Ecology and Evolution, 2017, 1, 27.	7.8	180
21	Evolution of miRNA Tailing by 3′ Terminal Uridylyl Transferases in Metazoa. Genome Biology and Evolution, 2017, 9, 1547-1560.	2.5	11
22	Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis. RNA Biology, 2017, 14, 1727-1741.	3.1	49
23	Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Research, 2017, 45, 938-950.	14.5	26
24	Deadly Innovations: Unraveling the Molecular Evolution of Animal Venoms., 2016,, 1-27.		10
25	Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. Journal of Proteomics, 2016, 135, 62-72.	2.4	67
26	The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. PLoS Genetics, 2015, 11, e1005596.	3.5	121
27	Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels. , 2015, , 471-491.		0
28	Evolution of voltage-gated ion channels at the emergence of Metazoa. Journal of Experimental Biology, 2015, 218, 515-525.	1.7	109
29	Evolution of an Ancient Venom: Recognition of a Novel Family of Cnidarian Toxins and the Common Evolutionary Origin of Sodium and Potassium Neurotoxins in Sea Anemone. Molecular Biology and Evolution, 2015, 32, 1598-1610.	8.9	82
30	The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2–S6Âin the pore module of target sodium channels. Biochemical Journal, 2014, 463, 271-277.	3.7	12
31	Cnidarian microRNAs frequently regulate targets by cleavage. Genome Research, 2014, 24, 651-663.	5.5	104
32	The Evolution of the Four Subunits of Voltage-Gated Calcium Channels: Ancient Roots, Increasing Complexity, and Multiple Losses. Genome Biology and Evolution, 2014, 6, 2210-2217.	2.5	50
33	Bcs <scp>T</scp> x3 is a founder of a novel sea anemone toxin family of potassium channel blocker. FEBS Journal, 2013, 280, 4839-4852.	4.7	35
34	AdE-1, a new inotropic Na+ channel toxin from <i>Aiptasia diaphana</i> , is similar to, yet distinct from, known anemone Na+ channel toxins. Biochemical Journal, 2013, 451, 81-90.	3.7	12
35	Analysis of Soluble Protein Contents from the Nematocysts of a Model Sea Anemone Sheds Light on Venom Evolution. Marine Biotechnology, 2013, 15, 329-339.	2.4	95
36	The Evolution of MicroRNA Pathway Protein Components in Cnidaria. Molecular Biology and Evolution, 2013, 30, 2541-2552.	8.9	57

#	Article	IF	Citations
37	Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels. , 2013, , 1-19.		2
38	Recurrent Horizontal Transfer of Bacterial Toxin Genes to Eukaryotes. Molecular Biology and Evolution, 2012, 29, 2223-2230.	8.9	91
39	Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal Signaling. Cell Reports, 2012, 2, 242-248.	6.4	67
40	Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1351-1358.	2.6	90
41	Sirtuin regulation in calorie restriction. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1576-1583.	2.3	46
42	Positions under Positive SelectionKey for Selectivity and Potency of Scorpion Â-Toxins. Molecular Biology and Evolution, 2010, 27, 1025-1034.	8.9	71
43	Drosomycin, an Innate Immunity Peptide of Drosophila melanogaster, Interacts with the Fly Voltage-gated Sodium Channel. Journal of Biological Chemistry, 2009, 284, 23558-23563.	3.4	36
44	Fusion and Retrotransposition Events in the Evolution of the Sea Anemone Anemonia viridis Neurotoxin Genes. Journal of Molecular Evolution, 2009, 69, 115-124.	1.8	18
45	Sea anemone toxins affecting voltage-gated sodium channels – molecular and evolutionary features. Toxicon, 2009, 54, 1089-1101.	1.6	94
46	Intron Retention as a Posttranscriptional Regulatory Mechanism of Neurotoxin Expression at Early Life Stages of the Starlet Anemone Nematostella vectensis. Journal of Molecular Biology, 2008, 380, 437-443.	4.2	43
47	Concerted Evolution of Sea Anemone Neurotoxin Genes Is Revealed through Analysis of the Nematostella vectensis Genome. Molecular Biology and Evolution, 2008, 25, 737-747.	8.9	78
48	Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels. Biochemical Journal, 2007, 406, 41-48.	3.7	51
49	Expression and Mutagenesis of the Sea Anemone Toxin Av2 Reveals Key Amino Acid Residues Important for Activity on Voltage-Gated Sodium Channels. Biochemistry, 2006, 45, 8864-8873.	2.5	39
50	HYPOTHESIS: When positive selection of neurotoxin genes is missing. FEBS Journal, 2006, 273, 3886-3892.	4.7	28