Hiromitsu Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360065/publications.pdf

Version: 2024-02-01

66911 50276 7,215 178 46 78 citations h-index g-index papers 197 197 197 3971 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Excited-state dynamics of dipyrrolyldiketone difluoroboron complexes. Physical Chemistry Chemical Physics, 2022, 24, 1685-1691.	2.8	O
2	Diverse Crystal Structures of Ion Pairs Consisting of Oxaporphyrinium Cations and Pentacyanocyclopentadienide. Bulletin of the Chemical Society of Japan, 2022, 95, 796-801.	3.2	3
3	Charged π-Electronic Systems That Provide Assembled Structures. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 232-245.	0.1	1
4	Electron-donating curved π-electronic systems that complex with buckyballs. Physical Chemistry Chemical Physics, 2022, 24, 13286-13292.	2.8	3
5	Ion-Pairing Assemblies of Anion-Responsive π-Electronic Systems Bearing Triazole Moieties Introduced by Click Chemistry. Journal of Organic Chemistry, 2022, 87, 7818-7825.	3.2	4
6	Ordered Arrangement of Charged Porphyrins in π-Electronic Ion-Pairing Assemblies. ECS Meeting Abstracts, 2022, MA2022-01, 982-982.	0.0	0
7	Conformation-Changeable π-Electronic Systems with Metastable Bent-Core Conformations and Liquid-Crystalline-State Electric-Field-Responsive Properties. Organic Letters, 2021, 23, 305-310.	4.6	4
8	lon-pairing π-electronic systems: ordered arrangement and noncovalent interactions of negatively charged porphyrins. Chemical Science, 2021, 12, 9645-9657.	7.4	23
9	Nitro-Substituted Dipyrrolyldiketone BF2 Complexes as Electronic-State-Adjustable Anion-Responsive Ï€-Electronic Systems. Molecules, 2021, 26, 595.	3.8	O
10	Photoisomerization-induced patterning of ion-pairing materials based on anionic azobenzene and its complex with a fluorescent π-electronic system. Chemical Communications, 2021, 57, 4287-4290.	4.1	6
11	Supramolecular Assemblies of Dipyrrolyldiketone Cull Complexes. Molecules, 2021, 26, 861.	3.8	4
12	Ï€-Electronic Ion-Pairing Assemblies of Deprotonation-Induced Anions. Organic Letters, 2021, 23, 3897-3901.	4.6	8
13	Syntheses and Physical Properties of Cationic BNâ€Embedded Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 12945-12950.	2.0	11
14	Syntheses and Physical Properties of Cationic BNâ€Embedded Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 12835-12840.	13.8	26
15	Dipyrrolyldiketone Pt ^{II} Complexes: Ionâ€Pairing Ï€â€Electronic Systems with Various Anionâ€Binding Modes. Chemistry - A European Journal, 2021, 27, 10068-10076.	3.3	6
16	Charged Porphyrins: π-Electronic Systems That Form Ion-Pairing Assembled Structures. Bulletin of the Chemical Society of Japan, 2021, 94, 2252-2262.	3.2	13
17	Ground- and excited-state dynamic control of an anion receptor by hydrostatic pressure. Chemical Science, 2021, 12, 6691-6698.	7.4	10
18	Pyrrole-bridged quinones: π-electronic systems that modulate electronic structures by tautomerism and deprotonation. Chemical Communications, 2021, 57, 6983-6986.	4.1	8

#	Article	IF	CITATIONS
19	Self-assemblies of anionic-unit-introduced anion-responsive π-electronic molecules. Organic and Biomolecular Chemistry, 2021, 19, 7369-7373.	2.8	3
20	<i>meso</i> -Free dipyrrins: Formation of assembled structures including a 2D ordered pattern. Journal of Porphyrins and Phthalocyanines, 2020, 24, 75-83.	0.8	0
21	Switching of Twoâ€Photon Optical Properties by Anion Binding of Pyrroleâ€Based Boron Diketonates through Conformation Change. Chemistry - A European Journal, 2020, 26, 3404-3410.	3.3	18
22	lonâ€Pairing Assemblies of Porphyrin–Au ^{III} Complexes in Combination with Ï€â€Electronic Receptor–Anion Complexes. Chemistry - an Asian Journal, 2020, 15, 494-498.	3.3	16
23	Charge-by-Charge Ion Pairing Preserves Fluorescence Emission. CheM, 2020, 6, 1847-1849.	11.7	2
24	Anionâ€Responsive Molecules That Exhibit Switching of Twoâ€Photon Optical Properties. ChemPlusChem, 2020, 85, 1719-1729.	2.8	3
25	Self-Associating Curved π-Electronic Systems with Electron-Donating and Hydrogen-Bonding Properties. Journal of the American Chemical Society, 2020, 142, 16420-16428.	13.7	12
26	Dipyrrolyldiketonato Titanium(IV) Complexes from Monomeric to Multinuclear Architectures: Synthesis, Stability, and Liquid-Crystal Properties. Inorganic Chemistry, 2020, 59, 12802-12816.	4.0	6
27	Pyrrole-based anion-responsive π-electronic molecules as fluorescence sensors responsive to multiple stimuli. Organic and Biomolecular Chemistry, 2020, 18, 4433-4438.	2.8	6
28	Real-Space Imaging of a Single-Molecule Monoradical Reaction. Journal of the American Chemical Society, 2020, 142, 13550-13557.	13.7	14
29	Arylethynyl Groups That Modulate Anionâ€Binding and Assembling Modes of Rod―and Fanâ€5haped Ï€â€Electronic Systems. Chemistry - A European Journal, 2020, 26, 6767-6772.	3.3	6
30	First decade of π-electronic ion-pairing assemblies. Molecular Systems Design and Engineering, 2020, 5, 757-771.	3.4	35
31	Computational simulation of anion binding association mechanisms contributing toward rotation of pyrrole rings in dipyrrolyldiketone BF2 complexes. RSC Advances, 2020, 10, 12013-12024.	3.6	0
32	Anionâ€Responsive Ï€â€Electronic Systems Exhibiting Diverse Conformations and Stoichiometries in Anion Binding. European Journal of Organic Chemistry, 2020, 2020, 3491-3498.	2.4	4
33	Ï€-Electronic Ion-Pairing Assemblies for Photoswitching Materials. , 2020, , 301-326.		0
34	Photo-responsive dimension-controlled ion-pairing assemblies based on anion complexes of Ĭ€-electronic systems. Chemical Communications, 2019, 55, 10269-10272.	4.1	11
35	Quadruply <i>N</i> -methylated octaphyrin: a helical macrocycle exhibiting chiroptical properties and dynamic conformation changes correlated with helical and inner <i>N</i> -methyl orientations. Organic and Biomolecular Chemistry, 2019, 17, 1163-1168.	2.8	8
36	Liquid Crystals Comprising π-Electronic Ions from Porphyrin–AuIII Complexes. IScience, 2019, 14, 241-256.	4.1	30

3

#	Article	IF	CITATIONS
37	Multiply aryl-substituted dipyrrolyldiketone boron complexes exhibiting anion-responsive emissive properties. Chemical Communications, 2019, 55, 8242-8245.	4.1	12
38	Substitutionâ€Pattern―and Counteranionâ€Depending Ionâ€Pairing Assemblies Based on Electronâ€Deficient Porphyrin–Au ^{III} Complexes. Chemistry - an Asian Journal, 2019, 14, 2129-2137.	3.3	16
39	Ion-Pairing Assemblies Comprising Anion Complexes of π-Extended Anion-Responsive Molecules. Journal of Organic Chemistry, 2019, 84, 8886-8898.	3.2	7
40	Pyrroleâ€Based Ï€â€System–Pt ^{II} Complexes: Chiroptical Properties and Excitedâ€State Dynamics with Microsecond Triplet Lifetimes. Chemistry - A European Journal, 2019, 25, 8797-8804.	3.3	6
41	Peripheral Modifications of <i>meso</i> â€Hydroxyporphyrins: Formation of Ï€â€Electronic Anions and Ionâ€Pairing Assemblies. Chemistry - A European Journal, 2019, 25, 6712-6717.	3.3	12
42	Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nature Communications, 2019, 10, 1440.	12.8	11
43	Arylpyrrolyldiketone Boron Complexes Exhibiting Various Anionâ€Binding Modes Based on Dynamic Conformation Changes. Chemistry - an Asian Journal, 2019, 14, 1777-1785.	3.3	8
44	lon-pairing assemblies based on π-extended dipyrrolylquinoxalines. Chemical Communications, 2019, 55, 326-329.	4.1	6
45	Dimension-Controlled π-Electronic Ion-Pairing Assemblies. Bulletin of the Chemical Society of Japan, 2018, 91, 420-436.	3.2	63
46	Complexation of Anion-responsive π-Electronic System with Alkyl-substituted Azobenzene Carboxylate Providing Ion-pairing Assemblies. Chemistry Letters, 2018, 47, 404-407.	1.3	9
47	Dynamic Polymorph Formation during Evaporative Crystallization from Solution: The Key Role of Liquidâ€Like Clusters as "Crucibleâ€at Ambient Temperature. Chemistry - A European Journal, 2018, 24, 4343-4349.	3.3	13
48	Ï€-Electronic Ion-Pairing Supramolecular Assemblies. , 2018, , 1-32.		0
49	Pyrroleâ€Based Zwitterionic Ï€â€Electronic Systems That Form Selfâ€Assembled Dimers. Chemistry - A European Journal, 2018, 24, 16176-16182.	3.3	5
50	Induced-fit expansion and contraction of a self-assembled nanocube finely responding to neutral and anionic guests. Nature Communications, 2018, 9, 4530.	12.8	33
51	Cyclic Anion-Responsive π-Electronic Molecules That Overcome Energy Losses Induced by Conformation Changes. Organic Letters, 2018, 20, 3268-3272.	4.6	11
52	Induced Homeotropic Alignment of Nematic Liquid Crystals by Doping Side-on Carbosilane-based Oligomers. Chemistry Letters, 2018, 47, 1180-1183.	1.3	1
53	lonâ€Pairing Assemblies of Ï€â€Electronic Anions Formed by Intramolecular Hydrogen Bonding. Chemistry - A European Journal, 2018, 24, 8910-8916.	3.3	17
54	Pyrrole-Based Anion-Responsive π-Electronic Molecules as Hydrogen-Bonding Catalysts. Organic Letters, 2018, 20, 2853-2856.	4.6	25

#	Article	IF	CITATIONS
55	Cooperatively Interlocked [2+1]â€₹ype Ï€â€System–Anion Complexes. Chemistry - A European Journal, 2017, 23, 4160-4168.	3.3	17
56	Dimension-controlled assemblies of anion-responsive π-electronic systems bearing aryl substituents with fan-shaped geometries. Chemical Communications, 2017, 53, 3834-3837.	4.1	13
57	Dimension-controlled ion-pairing assemblies based on π-electronic charged species. Chemical Communications, 2017, 53, 2894-2909.	4.1	68
58	Deprotonated meso-hydroxyporphyrin as a stable π-electronic anion: the building unit of an ion-pairing assembly. Dalton Transactions, 2017, 46, 8924-8928.	3.3	20
59	Photoâ€Responsive Soft Ionic Crystals: Ionâ€Pairing Assemblies of Azobenzene Carboxylates. Chemistry - A European Journal, 2017, 23, 9244-9248.	3.3	17
60	Conjunction of Pyrrole and Amide Moieties: Highly Anionâ€Responsive Ï€â€Electronic Molecules Forming Ionâ€Free and Ionâ€Pairing Assemblies. Chemistry - A European Journal, 2017, 23, 11357-11365.	3.3	14
61	Relating stacking structures and charge transport in crystal polymorphs of the pyrrole-based π-conjugated molecule. Organic Electronics, 2017, 49, 53-63.	2.6	11
62	Pyrrole-based Hydrogen-bonding Dimers Providing Discotic Columnar Structures. Chemistry Letters, 2017, 46, 1269-1271.	1.3	0
63	H-Aggregated π-Systems Based on Disulfide-Linked Dimers of Dipyrrolyldiketone Boron Complexes. Journal of Organic Chemistry, 2017, 82, 11166-11172.	3.2	7
64	lonâ€Free and Ionâ€Pairing Assemblies of Anionâ€Responsive Ï€â€Electronic Systems Possessing Directly Linked Alkyl Chains. Chemistry - an Asian Journal, 2016, 11, 2025-2029.	3.3	10
65	Ï€â€Electron Systems That Form Planar and Interlocked Anion Complexes and Their Ionâ€Pairing Assemblies. Chemistry - A European Journal, 2016, 22, 626-638.	3.3	37
66	Dimension-controlled assemblies of modified bipyrroles stabilized by electron-withdrawing moieties. Chemical Communications, 2016, 52, 7157-7160.	4.1	7
67	Negatively Charged Ï€â€Electronic Systems by Deprotonation of Hydroxyâ€Substituted Dipyrrolyldiketone Boron Complexes. Chemistry - an Asian Journal, 2016, 11, 3423-3429.	3.3	11
68	lon-Pairing Crystal Polymorphs of Interlocked [2 + 1]-Type Receptor–Anion Complexes. Journal of Organic Chemistry, 2016, 81, 8530-8536.	3.2	9
69	Dipyrrolylpyrimidines as anion-responsive π-electronic systems. Organic and Biomolecular Chemistry, 2016, 14, 8035-8038.	2.8	10
70	lonâ€Pairing Assemblies Based on Pentacyanoâ€Substituted Cyclopentadienide as a Ï€â€Electronic Anion. Chemistry - A European Journal, 2016, 22, 7843-7850.	3.3	43
71	Doubly <i>N</i> -Methylated Porphyrinoids. Organic Letters, 2016, 18, 3006-3009.	4.6	8
72	β-Perfluoroalkyl-substituted pyrrole as an anion-responsive π-electronic system through a single NH moiety. Chemical Communications, 2016, 52, 7364-7367.	4.1	9

#	Article	IF	CITATIONS
73	lon-pairing assemblies of photoresponsive cations and an interlocked [2 + 1]-type π-system-anion complex. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 215-223.	3.9	6
74	Anion-Responsive π-Electronic Systems Providing Ion-Pairing Assemblies. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 243-253.	0.1	2
75	Dimensionâ€Controlled Assemblies Comprising Ï€â€Electronic Systems. Chemical Record, 2015, 15, 1151-1152.	5. 8	O
76	Carboxylateâ€Driven Supramolecular Assemblies of Protonated <i>meso </i> â€Arylâ€Substituted Dipyrrolylpyrazoles. Chemistry - A European Journal, 2015, 21, 9520-9527.	3.3	8
77	Dipyrrolyphenol as a precursor of Ï∈-electronic anion that forms ion pairs with cations. Chemical Communications, 2015, 51, 17572-17575.	4.1	26
78	Ion-based assemblies of planar anion complexes and cationic Pt ^{II} complexes. Chemical Communications, 2014, 50, 10615-10618.	4.1	23
79	Helical π-Systems of Bidipyrrin–Metal Complexes. Chemistry Letters, 2014, 43, 1078-1080.	1.3	13
80	Ion-Based Liquid Crystals: From Well-Defined Self-Organized Nanostructures to Applications. Nanoscience and Technology, 2014, , 281-299.	1.5	1
81	Two double helical modes of bidipyrrin–ZnII complexes. Chemical Science, 2013, 4, 1204.	7.4	53
82	Ion-based materials of boron-modified dipyrrolyldiketones as anion receptors. Chemical Communications, 2013, 49, 2506.	4.1	22
83	Assembled structures of dipyrrins and their oligomers bridged by dioxy-boron moieties. Dalton Transactions, 2013, 42, 15885.	3.3	17
84	Cation Modules as Building Blocks Forming Supramolecular Assemblies with Planar Receptor–Anion Complexes. Journal of the American Chemical Society, 2013, 135, 1284-1287.	13.7	63
85	Recent progress in research on anion-responsive pyrrole-based π-conjugated acyclic molecules. Chemical Communications, 2013, 49, 4100.	4.1	50
86	Ion-based materials comprising planar charged species. Chemical Communications, 2013, 49, 4085-4099.	4.1	58
87	Anion-driven structures of radially arranged anion receptor oligomers. Chemical Communications, 2013, 49, 5310.	4.1	19
88	Assembled Structures of Anion-Responsive π-Systems Tunable by Alkyl/Perfluoroalkyl Segments in Peripheral Side Chains. Chemistry of Materials, 2013, 25, 2656-2662.	6.7	19
89	lonâ€Pairâ€Based Assemblies Comprising Pyrrole–Pyrazole Hybrids. Chemistry - A European Journal, 2013, 19, 9224-9233.	3.3	16
90	Corannuleneâ€Fused Anionâ€Responsive Ï€â€Conjugated Molecules that Form Selfâ€Assemblies with Unique Electronic Properties. Chemistry - an Asian Journal, 2013, 8, 2088-2095.	3.3	29

#	Article	IF	Citations
91	Ion-Based Materials Derived from Positively and Negatively Charged Chloride Complexes of π-Conjugated Molecules. Journal of the American Chemical Society, 2013, 135, 14797-14805.	13.7	63
92	Chiroptical Control in Helical Receptor–Anion Complexes. Organic Letters, 2013, 15, 6006-6009.	4.6	26
93	Recent progress in research on stimuli-responsive circularly polarized luminescence based on & amp;pi;-conjugated molecules. Pure and Applied Chemistry, 2013, 85, 1967-1978.	1.9	134
94	Chirality Induction by Formation of Assembled Structures Based on Anionâ€Responsive Ï€â€Conjugated Molecules. Chemistry - A European Journal, 2013, 19, 16263-16271.	3.3	26
95	<i>Meso–meso</i> directly linked dipyrrolyl ligand dimer that shows the formation of metal-coordination polymers. Journal of Porphyrins and Phthalocyanines, 2013, 17, 86-91.	0.8	13
96	Supramolecular Chemistry of Pyrrole-Based π-Conjugated Molecules. Bulletin of the Chemical Society of Japan, 2013, 86, 1359-1399.	3.2	63
97	Formation and Geometrical Control of Polygon-Like Metal-Coordination Assemblies. Chemistry - A European Journal, 2013, 19, 11676-11685.	3.3	18
98	Formation of Cyclic and Polymeric Structures from Zwitterions. Chemistry - A European Journal, 2013, 19, 6956-6960.	3.3	1
99	Solid-state supramolecular assemblies consisting of planar charged species. Organic and Biomolecular Chemistry, 2012, 10, 2603.	2.8	25
100	Charge-based and charge-free molecular assemblies comprising π-extended derivatives of anion-responsive acyclic oligopyrroles. Chemical Communications, 2012, 48, 2301.	4.1	34
101	Visualization of the complexation between chloride and anion receptors using volume change of ionomer gels in organic solvents. Soft Matter, 2012, 8, 7490.	2.7	15
102	Asymmetric Induction in the Preparation of Helical Receptor–Anion Complexes: Ionâ€Pair Formation with Chiral Cations. Angewandte Chemie - International Edition, 2012, 51, 7967-7971.	13.8	102
103	Chargeâ€Based Assemblies Comprising Planar Receptor–Anion Complexes with Bulky Alkylammonium Cations. Chemistry - A European Journal, 2012, 18, 3460-3463.	3.3	27
104	Ion Materials Comprising Planar Charged Species. Chemistry - A European Journal, 2012, 18, 7016-7020.	3.3	50
105	Water-supported organized structures based on wedge-shaped amphiphilic derivatives of dipyrrolyldiketone boron complexes. Physical Chemistry Chemical Physics, 2011, 13, 3843.	2.8	15
106	Self-sorting self-complementary assemblies of π-conjugated acyclic anion receptors. Chemical Communications, 2011, 47, 8241.	4.1	23
107	Solvent-dependent supramolecular assemblies of π-conjugated anion-responsive acyclic oligopyrroles. Chemical Communications, 2011, 47, 7620.	4.1	32
108	Anion-responsive covalently linked and metal-bridged oligomers. Chemical Communications, 2011, 47, 9342.	4.1	25

#	Article	IF	Citations
109	Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive π-Conjugated Molecules. Journal of the American Chemical Society, 2011, 133, 9266-9269.	13.7	385
110	Anion Modules: Building Blocks of Supramolecular Assemblies by Combination with π-Conjugated Anion Receptors. Journal of the American Chemical Society, 2011, 133, 8896-8899.	13.7	70
111	Synthesis, Crystal Structures, and Supramolecular Assemblies of Pyrrole-Based Anion Receptors Bearing Modified Pyrrole β-Substituents. Journal of Organic Chemistry, 2011, 76, 5177-5184.	3.2	43
112	Solid-state hydrogen-bonding self-assemblies and keto–enol tautomerism of 1,3-dipyrrolyl-1,3-propanediones. Supramolecular Chemistry, 2011, 23, 209-217.	1.2	3
113	From Helix to Macrocycle: Anionâ€Driven Conformation Control of Ï€â€Conjugated Acyclic Oligopyrroles. Chemistry - A European Journal, 2011, 17, 1485-1492.	3.3	109
114	Supramolecular Assemblies Derived from Formylâ€Substituted Ï€â€Conjugated Acyclic Anion Receptors. European Journal of Organic Chemistry, 2010, 2010, 1469-1482.	2.4	17
115	Formation of Metalâ€Assisted Stable Double Helices in Dimers of Cyclic Bisâ€Tetrapyrroles that Exhibit Springâ€Like Motion. Chemistry - A European Journal, 2010, 16, 11653-11661.	3.3	55
116	Electronic and Optical Properties in the Solidâ€State Molecular Assemblies of Anionâ€Responsive Pyrroleâ€Based Ï€â€Conjugated Systems. Chemistry - A European Journal, 2010, 16, 10994-11002.	3.3	33
117	Oriented Salts: Dimensionâ€Controlled Chargeâ€byâ€Charge Assemblies from Planar Receptor–Anion Complexes. Angewandte Chemie - International Edition, 2010, 49, 10079-10083.	13.8	129
118	Charge-by-charge assemblies based on planar anion receptors. Pure and Applied Chemistry, 2010, 83, 189-199.	1.9	18
119	Acyclic Oligopyrrolic Anion Receptors. Topics in Heterocyclic Chemistry, 2010, , 103-143.	0.2	16
120	Discotic columnar mesophases derived from â€~rod-like'π-conjugated anion-responsive acyclic oligopyrroles. Chemical Communications, 2010, 46, 4559.	4.1	60
121	Modification at a boron unit: tuning electronic and optical properties of π-conjugated acyclic anion receptors. Organic and Biomolecular Chemistry, 2010, 8, 4308.	2.8	32
122	Solventâ€Assisted Organized Structures Based on Amphiphilic Anionâ€Responsive Ï€â€Conjugated Systems. Chemistry - A European Journal, 2009, 15, 3706-3719.	3.3	34
123	Acyclic oligopyrroles as building blocks of supramolecular assemblies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 193-214.	1.6	38
124	Synthesis, properties, and solid-state assemblies of \hat{l}^2 -alkyl-substituted dipyrrolyldiketone BF2 complexes. Synthetic Metals, 2009, 159, 792-796.	3.9	24
125	Alkoxy-substituted Derivatives of π-Conjugated Acyclic Anion Receptors: Effects of Substituted Positions. Chemistry Letters, 2009, 38, 208-209.	1.3	21
126	Dipyrrin Zn ^{II} Complexes with Functional Aryl Groups: Formation, Characterization, and Structures in the Solid State. Journal of Nanoscience and Nanotechnology, 2009, 9, 240-248.	0.9	19

#	Article	IF	Citations
127	Anionâ€Responsive Supramolecular Gels. Chemistry - A European Journal, 2008, 14, 11274-11282.	3.3	267
128	Detection of unusual î"HOMO<î"LUMO relationship in tetrapyrrolic cis- and trans-doubly N-confused porphyrins. Chemical Physics Letters, 2008, 460, 495-498.	2.6	14
129	Diol-substituted boron complexes of dipyrrolyl diketones as anion receptors and covalently linked $\hat{a} \in \mathbb{R}^{\infty}$ pivotal $\hat{a} \in \mathbb{R}^{\infty}$ dimers. Chemical Communications, 2008, , 4285.	4.1	39
130	BF ₂ complexes of α-alkyl-substituted dipyrrolyldiketones as acyclic anion receptors. Organic and Biomolecular Chemistry, 2008, 6, 433-436.	2.8	35
131	Selective iodinated dipyrrolyldiketone BF2 complexes as potential building units for oligomeric systems. Organic and Biomolecular Chemistry, 2008, 6, 3091.	2.8	45
132	Heteroaryl-Substituted C ₃ -Bridged Oligopyrroles: Potential Building Subunits of Anion-Responsive π-Conjugated Oligomers. Organic Letters, 2008, 10, 3179-3182.	4.6	72
133	Aryl-Substituted C ₃ -Bridged Oligopyrroles as Anion Receptors for Formation of Supramolecular Organogels. Journal of the American Chemical Society, 2007, 129, 13661-13674.	13.7	252
134	Dipyrrolylpyrazoles: anion receptors in protonated form and efficient building blocks for organized structures. Chemical Communications, 2007, , 1136-1138.	4.1	40
135	Hydrogen bonding self-assemblies with 1-D linear, dimeric and hexagonal nanostructures of meso-pyridyl-substituted dipyrromethanes. Chemical Communications, 2007, , 2726.	4.1	11
136	BF2Complexes of \hat{l}^2 -Tetraethyl-Substituted Dipyrrolyldiketones as Anion Receptors: \hat{A} Potential Building Subunits for Oligomeric Systems. Journal of Organic Chemistry, 2007, 72, 2612-2616.	3.2	59
137	Nanoscale Metal Coordination Macrocycles Fabricated by Using "Dimeric―Dipyrrins. Chemistry - A European Journal, 2007, 13, 7900-7907.	3.3	27
138	Supramolecular Chemistry of Acyclic Oligopyrroles. European Journal of Organic Chemistry, 2007, 2007, 5313-5325.	2.4	80
139	Micro- and Nanometer-Scale Porous, Fibrous, and Sheet Architectures Constructed by Supramolecular Assemblies of Dipyrrolyldiketones. Chemistry - an Asian Journal, 2007, 2, 350-357.	3.3	34
140	Unprecedented Formation of a Rhodium Cluster Triggered by Rhodium-Fastened N-Confused Gable Porphyrin. Inorganic Chemistry, 2006, 45, 10428-10430.	4.0	27
141	Nanoscale Spherical Architectures Fabricated by Metal Coordination of Multiple Dipyrrin Moieties. Journal of the American Chemical Society, 2006, 128, 10024-10025.	13.7	170
142	BF2 Complex of Fluorinated Dipyrrolyldiketone:  A New Class of Efficient Receptor for Acetate Anions. Inorganic Chemistry, 2006, 45, 8205-8210.	4.0	93
143	Halide-Anion Binding by Singly and Doubly N-Confused Porphyrins. Chemistry - an Asian Journal, 2006, 1, 832-844.	3.3	62
144	A dozen years of N-confusion: From synthesis to supramolecular chemistry. Pure and Applied Chemistry, 2006, 78, 29-44.	1.9	92

#	Article	IF	Citations
145	CH···Anion Interaction in BF2Complexes of C3-Bridged Oligopyrroles. Journal of Organic Chemistry, 2006, 71, 2389-2394.	3.2	63
146	Dipyrrin–Porphyrin Hybrids: Potential π-Conjugated Platform to Fabricate Coordination Oligomers. Chemistry Letters, 2005, 34, 1150-1151.	1.3	10
147	Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-Hâ‹â‹â‹â‹Xâ^' Interactions. Chemistry - A European Journal, 2005, 11, 5661-5666.	3.3	169
148	N-Confused Porphyrins as New Scaffolds for Supramolecular Architecture. ChemInform, 2005, 36, no.	0.0	0
149	N /font>-confused porphyrins as new scaffolds for supramolecular architecture. Journal of Porphyrins and Phthalocyanines, 2004, 08, 67-75.	0.8	56
150	Anion Binding Properties of N-Confused Porphyrins at the Peripheral Nitrogen. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 49, 33-36.	1.6	71
151	Doubly N-Confused Pentaphyrins. Angewandte Chemie - International Edition, 2004, 43, 2951-2955.	13.8	41
152	Oligopyrrole-Based Solid State Self-Assemblies. ChemInform, 2004, 35, no.	0.0	0
153	Synthesis of A2B2 type cis-doubly N-confused porphyrins from N-confused dipyrromethanes. Tetrahedron, 2004, 60, 2427-2432.	1.9	42
154	Photochemistry of doubly N-confused porphyrin bonded to non-conventional high oxidation state Ag(III) and Cu(III) ions. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 403-411.	3.9	33
155	2,3-Dipyrrolylquinoxaline-Based Anion Sensors. , 2004, , 71-85.		2
156	Title is missing!. Angewandte Chemie, 2003, 115, 2236-2238.	2.0	16
157	Facile Formation of N-Confused Porphyrin Dimers by Platinum(II) Coordination to the Outer-Nitrogen Atoms. Angewandte Chemie - International Edition, 2003, 42, 2186-2188.	13.8	58
158	Oligopyrrole-based solid state self-assemblies. Polyhedron, 2003, 22, 2963-2983.	2.2	44
159	Crystal structures of palladium(II) and copper(II) complexes of meso-phenyl tripyrrinone. Inorganic Chemistry Communication, 2003, 6, 162-164.	3.9	30
160	2-Allenyl-2H-benzotriazole. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o338-o339.	0.4	0
161	Hydrogen Bonding 1-D Chain Network of cis-Doubly N-Confused Porphyrins. Supramolecular Chemistry, 2003, 15, 447-450.	1.2	24
162	N-Confused Porphyrin-Bearingmeso-Perfluorophenyl Groups:  A Potential Agent That Forms Stable Square-Planar Complexes with Cu(II) and Ag(III). Organic Letters, 2003, 5, 1293-1296.	4.6	125

#	Article	IF	CITATIONS
163	Control of Cu(II) and Cu(III) States in N-Confused Porphyrin by Protonation/Deprotonation at the Peripheral Nitrogen. Journal of the American Chemical Society, 2003, 125, 11822-11823.	13.7	130
164	Trans Doubly N-Confused Porphyrins:Â Cu(III) Complexation and Formation of Rodlike Hydrogen-Bonding Networks. Journal of the American Chemical Society, 2003, 125, 15690-15691.	13.7	149
165	Doubly N-Confused Porphyrins as Efficient Sensitizers for Singlet Oxygen Generation. Chemistry Letters, 2003, 32, 244-245.	1.3	40
166	Regioselective Oxidative Liberation of Aryl-Substituted Tripyrrinone Metal Complexes from N-Confused Porphyrin. Organic Letters, 2002, 4, 181-184.	4.6	77
167	Quinoxaline-Bridged Porphyrinoids. Journal of the American Chemical Society, 2002, 124, 13474-13479.	13.7	196
168	Quinoxaline-oligopyrroles: Improved pyrrole-based anion receptorsElectronic supplementary information (ESI) available: synthetic details of 3 and 4, titration studies for anion binding of 3 and 4, and crystallographic details for 3. See http://www.rsc.org/suppdata/cc/b1/b111708d/. Chemical Communications, 2002, , 862-863.	4.1	101
169	Confusion, inversion, and creationâ€"a new spring from porphyrin chemistry. Chemical Communications, 2002, , 1795-1804.	4.1	353
170	Acidâ^Base and Spectroelectrochemical Properties of Doubly N-Confused Porphyrins. Inorganic Chemistry, 2001, 40, 2020-2025.	4.0	55
171	Theoretical Study of Stability, Structures, and Aromaticity of Multiply N-Confused Porphyrins. Journal of Organic Chemistry, 2001, 66, 8563-8572.	3.2	85
172	Oxyindolophyrin:Â A Novel Fluoride Receptor Derived from N-Confused Corrole Isomer. Journal of the American Chemical Society, 2001, 123, 6435-6436.	13.7	93
173	First Synthesis of Tetrapyrrolylporphyrin. Organic Letters, 2000, 2, 187-189.	4.6	26
174	Inner C-arylation of a doubly N-confused porphyrin–Pd complex in toluene—the possibility of a Pd3+intermediate. Chemical Communications, 2000, , 1143-1144.	4.1	61
175	Stability and Structure of Doubly N-Confused Porphyrins. Journal of Organic Chemistry, 2000, 65, 4222-4226.	3.2	53
176	N-Confused Double-Decker Porphyrins. Inorganic Chemistry, 2000, 39, 5424-5425.	4.0	117
177	Doubly N-Confused Porphyrin:  A New Complexing Agent Capable of Stabilizing Higher Oxidation States. Journal of the American Chemical Society, 2000, 122, 803-807.	13.7	253
178	Dianion complexes of pyrrole-based anion receptors: $[2+1]$ -Type complexes that form ion-pairing assemblies. Journal of Porphyrins and Phthalocyanines, 0 , , A-G.	0.8	1