Ting-Ting Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359941/publications.pdf

Version: 2024-02-01

136950 175258 2,935 66 32 52 h-index citations g-index papers 66 66 66 3472 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Stringing Bimetallic Metal–Organic Frameworkâ€Derived Cobalt Phosphide Composite for Highâ€Efficiency Overall Water Splitting. Advanced Science, 2020, 7, 1903195.	11.2	214
2	Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745-753.	16.0	189
3	Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon, 2019, 146, 248-256.	10.3	177
4	Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nature Energy, 2019, 4, 290-299.	39.5	149
5	Incorporation of a [Ru(dcbpy)(bpy) ₂] ²⁺ photosensitizer and a Pt(dcbpy)Cl ₂ catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. Journal of Materials Chemistry A, 2015, 3, 10386-10394.	10.3	131
6	Self-supported hierarchical CuO _x @Co ₃ O ₄ heterostructures as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 14431-14439.	10.3	121
7	Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon, 2021, 174, 531-539.	10.3	100
8	Electrochemical Water Oxidation by <i>In Situ</i> -Generated Copper Oxide Film from [Cu(TEOA)(H ₂ 0) ₂][SO ₄] Complex. Inorganic Chemistry, 2015, 54, 3061-3067.	4.0	81
9	CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. International Journal of Hydrogen Energy, 2021, 46, 22268-22276.	7.1	78
10	Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214563.	18.8	72
11	CuO Nanorod Arrays Shelled with Amorphous NiFe Layered Double Hydroxide Film for Enhanced Electrocatalytic Water Oxidation Activity. ACS Applied Energy Materials, 2018, 1, 1364-1373.	5.1	58
12	A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chemical Communications, 2017, 53, 13027-13030.	4.1	57
13	Stable Molecular Photocathode for Solar-Driven CO ₂ Reduction in Aqueous Solutions. ACS Energy Letters, 2019, 4, 629-636.	17.4	54
14	Electrocatalytic water oxidation using a chair-like tetranuclear copper(ii) complex in a neutral aqueous solution. Dalton Transactions, 2016, 45, 12685-12690.	3.3	53
15	Hierarchical Cu2S NRs@CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochimica Acta, 2019, 296, 1035-1041.	5.2	53
16	Facile synthesis of porous CuO polyhedron from Cu-based metal organic framework (MOF-199) for electrocatalytic water oxidation. RSC Advances, 2016, 6, 77358-77365.	3.6	51
17	Surfactantâ€Mediated Morphological Evolution of MnCo Prussian Blue Structures. Small, 2020, 16, e2004614.	10.0	49
18	Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2018, 43, 2009-2017.	7.1	47

#	Article	IF	CITATIONS
19	Mn ₂ O ₃ Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2019, 2, 744-749.	5.0	43
20	Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium. Journal of Materials Science, 2018, 53, 4323-4333.	3.7	42
21	Construction of Hierarchically Structured CuO@CoP Anode for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11303-11312.	6.7	42
22	In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen. Inorganic Chemistry, 2020, 59, 15467-15477.	4.0	41
23	Ultrathin nanosheets-assembled CuO flowers for highly efficient electrocatalytic water oxidation. Journal of Materials Science, 2018, 53, 8141-8150.	3.7	40
24	Robust Cage-Based Zinc–Organic Frameworks Derived Dual-Doped Carbon Materials for Supercapacitor. Crystal Growth and Design, 2018, 18, 2358-2364.	3.0	38
25	MOF-templated syntheses of porous Co ₃ O ₄ hollow spheres and micro-flowers for enhanced performance in supercapacitors. CrystEngComm, 2018, 20, 3812-3816.	2.6	38
26	Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting. Electrochimica Acta, 2019, 318, 244-251.	5.2	37
27	Electrocatalytic CO ₂ Reduction with a Ruthenium Catalyst in Solution and on Nanocrystalline TiO ₂ . ChemSusChem, 2019, 12, 2402-2408.	6.8	37
28	Construction of a C@MoS ₂ @C sandwiched heterostructure for accelerating the pH-universal hydrogen evolution reaction. Chemical Communications, 2020, 56, 13393-13396.	4.1	37
29	Metal–Organic Frameworksâ€Derived Selfâ€Supported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, 15866-15888.	3.3	35
30	A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. Journal of the American Chemical Society, 2019, 141, 10390-10398.	13.7	34
31	Abundant Co-Nx sites onto hollow MOF-Derived nitrogen-doped carbon materials for enhanced oxygen reduction. Journal of Power Sources, 2021, 492, 229632.	7.8	34
32	Construction of hierarchical Mo2C nanoparticles onto hollow N-doped carbon polyhedrons for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 321, 134680.	5 . 2	33
33	Generally transform 3-dimensional In-based metal-organic frameworks into 2-dimensional Co,N-doped carbon nanosheets for Zn-air battery. Journal of Power Sources, 2019, 440, 227158.	7.8	33
34	Structural and Morphological Conversion between Two Co-Based MOFs for Enhanced Water Oxidation. Inorganic Chemistry, 2020, 59, 2701-2710.	4.0	33
35	Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst. Electrochimica Acta, 2020, 354, 136716.	5 . 2	31
36	A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation. Dalton Transactions, 2017, 46, 13020-13026.	3.3	30

#	Article	IF	CITATIONS
37	Bottom-up preparation of hierarchically porous MOF-modified carbon sphere derivatives for efficient oxygen reduction. Nanoscale, 2020, 12, 8785-8792.	5.6	30
38	Photochemical, Electrochemical, and Photoelectrochemical Water Oxidation Catalyzed by Waterâ€Soluble Mononuclear Ruthenium Complexes. Chemistry - A European Journal, 2014, 20, 13957-13964.	3.3	29
39	Paintbrush-like Co doped Cu3P grown on Cu foam as an efficient janus electrode for overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 28833-28840.	7.1	29
40	Highly Selective and Active Electrochemical Reduction of CO ₂ to CO on a Polymeric Co(II) Phthalocyanine@Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Composite. Inorganic Chemistry, 2020, 59, 14184-14192.	4.0	29
41	In-MOF-derived ultrathin heteroatom-doped carbon nanosheets for improving oxygen reduction. Nanoscale, 2020, 12, 10019-10025.	5.6	29
42	Rational construction of ultrafine noble metals onto carbon nanoribbons with efficient oxygen reduction in practical alkaline fuel cell. Chemical Engineering Journal, 2021, 424, 130336.	12.7	29
43	Porous Co ₃ O ₄ nanoparticles derived from a Co(<scp>ii</scp>)-cyclohexanehexacarboxylate metal–organic framework and used in a supercapacitor with good cycling stability. RSC Advances, 2016, 6, 86447-86454.	3.6	28
44	Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.	10.3	27
45	MOF-on-MOF Strategy to Construct a Nitrogen-Doped Carbon-Incorporated CoP@Fe–CoP Core-Shelled Heterostructure for High-Performance Overall Water Splitting. Inorganic Chemistry, 2022, 61, 1159-1168.	4.0	26
46	Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with \hat{l}_{\pm} -Fe2O3 photoanode. Electrochimica Acta, 2019, 307, 92-99.	5.2	24
47	Normal-pulse-voltage-assisted <i>in situ</i> fabrication of graphene-wrapped MOF-derived CuO nanoflowers for water oxidation. Chemical Communications, 2020, 56, 8750-8753.	4.1	24
48	MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.	6.3	24
49	Construction of a polymeric cobalt phthalocyanine@mesoporous graphitic carbon nitride composite for efficient photocatalytic CO ₂ reduction. Chemical Communications, 2021, 57, 6987-6990.	4.1	22
50	Silicaâ€Templated Metal Organic Frameworkâ€Derived Hierarchically Porous Cobalt Oxide in Nitrogenâ€Doped Carbon Nanomaterials for Electrochemical Glucose Sensing. ChemElectroChem, 2021, 8, 812-818.	3.4	20
51	Charge Transfer from Upconverting Nanocrystals to Semiconducting Electrodes: Optimizing Thermodynamic Outputs by Electronic Energy Transfer. Journal of the American Chemical Society, 2019, 141, 463-471.	13.7	19
52	CuCo2S4 integrated multiwalled carbon nanotube as high-performance electrocatalyst for electroreduction of nitrogen to ammonia. International Journal of Hydrogen Energy, 2020, 45, 14640-14647.	7.1	17
53	Self-supported N-Doped Carbon@NiXCo2-XP core-shell nanorod arrays on 3D Ni foam for boosted hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 36046-36055.	7.1	16
54	Differentiated Oxygen Evolution Behavior in MOF-Derived Oxide Nanomaterials Induced by Phase Transition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55454-55462.	8.0	16

#	Article	IF	CITATIONS
55	Abundant nanotube coated ordered macroporous carbon matrix with enhanced electrocatalytic activity. Journal of Power Sources, 2020, 467, 228302.	7.8	15
56	Ultrasmall Mo2C in N-doped carbon material from bimetallic ZnMo-MOF for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 2182-2190.	7.1	15
57	Electrochemical evolution of cobalt-carboxylate framework for efficient water oxidation. Journal of Power Sources, 2021, 499, 229947.	7.8	15
58	Manganese oxide with hollow rambutan-like morphology as highly efficient electrocatalyst for oxygen evolution reaction. Journal of Solid State Electrochemistry, 2018, 22, 2999-3007.	2.5	12
59	CeO ₂ decorated bimetallic phosphide nanowire arrays for enhanced oxygen evolution reaction electrocatalysis <i>via</i> interface engineering. Dalton Transactions, 2022, 51, 2923-2931.	3.3	12
60	Variable HOF-derived carbon-coated cobalt phosphide for electrocatalytic oxygen evolution. Carbon, 2022, 196, 457-465.	10.3	11
61	Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. Nano Letters, 2020, 20, 496-501.	9.1	10
62	Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance. Transition Metal Chemistry, 2019, 44, 349-354.	1.4	4
63	Improved performance of photoelectrochemical water oxidation from nanostructured hematite photoanode with an immobilized molecular cobalt salophen catalyst. Journal of Materials Science, 2020, 55, 12864-12875.	3.7	4
64	Carbon Nanotubes Grown on CuO Nanoparticle-Decorated Porous Carbon Microparticles for Water Oxidation. ACS Applied Nano Materials, 2021, 4, 12119-12126.	5.0	4
65	Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47499-47510.	8.0	3
66	Frontispiece: Metal–Organic Frameworksâ€Derived Selfâ€Supported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, .	3.3	0