Romina Pedreschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359635/publications.pdf

Version: 2024-02-01

111 3,619 36
papers citations h-index

36 56
h-index g-index

112 112 all docs citations

112 times ranked 4006 citing authors

#	Article	IF	CITATIONS
1	Transcriptome and hormone analyses reveals differences in physiological age of ′Hass′ avocado fruit. Postharvest Biology and Technology, 2022, 185, 111806.	6.0	8
2	Comparison of conventional and ultrasoundâ€assisted extractions of polyphenols from Inca muña (<i>Clinopodium bolivianum</i>) and their characterization using UPLC–PDAâ€ESl–Q/TOF–MS ⁿ technique. Journal of Food Processing and Preservation, 2022, 46, .	2.0	2
3	Effect of the Integrated Addition of a Red Tara Pods (Caesalpinia spinosa) Extract and NaCl over the Neo-Formed Contaminants Content and Sensory Properties of Crackers. Molecules, 2022, 27, 1020.	3.8	5
4	Proteomics analysis reveals new insights into surface pitting of sweet cherry cultivars displaying contrasting susceptibility. Journal of Horticultural Science and Biotechnology, 2022, 97, 615-625.	1.9	1
5	Differential Hydraulic Properties and Primary Metabolism in Fine Root of Avocado Trees Rootstocks. Plants, 2022, 11, 1059.	3.5	1
6	Controlled Atmosphere Storage Alleviates Hass Avocado Black Spot Disorder. Horticulturae, 2022, 8, 369.	2.8	7
7	Metabolomic and biochemical analysis of mesocarp tissues from table grape berries with contrasting firmness reveals cell wall modifications associated to harvest and cold storage. Food Chemistry, 2022, 389, 133052.	8.2	6
8	Short vs. Long-Distance Avocado Supply Chains: Life Cycle Assessment Impact Associated to Transport and Effect of Fruit Origin and Supply Conditions Chain on Primary and Secondary Metabolites. Foods, 2022, 11, 1807.	4.3	6
9	Prolonged on-tree maturation vs. cold storage of Hass avocado fruit: Changes in metabolites of bioactive interest at edible ripeness. Food Chemistry, 2022, 394, 133447.	8.2	4
10	Response Mechanisms of "Hass―Avocado to Sequential 1–methylcyclopropene Applications at Different Maturity Stages during Cold Storage. Plants, 2022, 11, 1781.	3.5	1
11	Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers. Critical Reviews in Food Science and Nutrition, 2021, 61, 649-665.	10.3	29
12	Evaluation of aerial and root plant growth behavior, water and nutrient use efficiency and carbohydrate dynamics for Hass avocado grown in a soilless and protected growing system. Scientia Horticulturae, 2021, 277, 109830.	3.6	9
13	Cell wall and metabolite composition of sweet cherry fruits from two cultivars with contrasting susceptibility to surface pitting during storage. Food Chemistry, 2021, 342, 128307.	8.2	9
14	Multifunctional in vitro bioactive properties: Antioxidant, antidiabetic, and antihypertensive of protein hydrolyzates from tarwi (<i>Lupinus mutabilis</i> biotransformation. Cereal Chemistry, 2021, 98, 423-433.	2.2	10
15	Metabolites, volatile compounds and in vitro functional properties during growth and commercial harvest of Peruvian lucuma (Pouteria lucuma). Food Bioscience, 2021, 40, 100882.	4.4	1
16	Can metabolites at harvest be used as physiological markers for modelling the softening behaviour of Chilean "Hass―avocados destined to local and distant markets?. Postharvest Biology and Technology, 2021, 174, 111457.	6.0	18
17	Biochemical and phenotypic characterization of sweet cherry (Prunus avium L.) cultivars with induced surface pitting. Postharvest Biology and Technology, 2021, 175, 111494.	6.0	5
18	Volatile Organic Compounds (VOCs) Produced by Gluconobacter cerinus and Hanseniaspora osmophila Displaying Control Effect against Table Grape-Rot Pathogens. Antibiotics, 2021, 10, 663.	3.7	14

#	Article	IF	CITATIONS
19	Diffusible Compounds Produced by Hanseniaspora osmophila and Gluconobacter cerinus Help to Control the Causal Agents of Gray Rot and Summer Bunch Rot of Table Grapes. Antibiotics, 2021, 10, 664.	3.7	10
20	Image Analysis Reveals That Lenticel Damage Does Not Result in Black Spot Development but Enhances Dehydration in Persea americana Mill. cv. Hass during Prolonged Storage. Agronomy, 2021, 11, 1699.	3.0	7
21	Physicochemical and bioactive compounds at edible ripeness of eleven varieties of avocado (<i>Persea) Tj ETQq1 Technology, 2021, 56, 5040-5049.</i>	1 0.7843 2.7	14 rgBT /Ove 2
22	Vacuum impregnation of apple slices with Yacon (<i>Smallanthus sonchifolius</i> Poepp. & Endl) fructooligosaccharides to enhance the functional properties of the fruit snack. International Journal of Food Science and Technology, 2021, 56, 392-401.	2.7	14
23	Primary and Phenolic Metabolites Analyses, In Vitro Health-Relevant Bioactivity and Physical Characteristics of Purple Corn (Zea mays L.) Grown at Two Andean Geographical Locations. Metabolites, 2021, 11, 722.	2.9	13
24	Unravelling the Molecular Regulation Mechanisms of Slow Ripening Trait in Prunus persica. Plants, 2021, 10, 2380.	3 . 5	3
25	The Effect of Hydrothermal Treatment on Metabolite Composition of Hass Avocados Stored in a Controlled Atmosphere. Plants, 2021, 10, 2427.	3.5	6
26	Pre-Anthesis Cytokinin Applications Increase Table Grape Berry Firmness by Modulating Cell Wall Polysaccharides. Plants, 2021, 10, 2642.	3 . 5	5
27	Proteomic analysis of mashua (Tropaeolum tuberosum) tubers subjected to postharvest treatments. Food Chemistry, 2020, 305, 125485.	8.2	10
28	A Comparison of Immediate and Short-Term Defensive Responses to <i>Phytophthora</i> Species Infection in Both Susceptible and Resistant Walnut Rootstocks. Plant Disease, 2020, 104, 921-929.	1.4	1
29	Bioactive compounds and antioxidant activity from harvest to edible ripeness of avocado cv. Hass (xi>Persea americana) throughout the harvest seasons. International Journal of Food Science and Technology, 2020, 55, 2208-2218.	2.7	24
30	Physico-chemical characterization, metabolomic profile and in vitro antioxidant, antihypertensive, antiobesity and antidiabetic properties of Andean elderberry (Sambucus nigra subsp. peruviana). Journal of Berry Research, 2020, 10, 193-208.	1.4	12
31	Enzymeâ€nssisted hydrolysates from sacha inchi (<i>Plukenetia volubilis ⟨i⟩) protein with in vitro antioxidant and antihypertensive properties. Journal of Food Processing and Preservation, 2020, 44, e14969.</i>	2.0	14
32	Unravelling factors associated with â€~blackspot' disorder in stored Hass avocado (<i>Persea) Tj ETQq0 0 0 r</i>	gBT/Over	lock 10 Tf 50
33	<i>In vitro</i> antioxidant and angiotensin lâ€converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (<i>Chenopodium quinoa</i>) and kiwicha (<i>Amaranthus caudatus</i>) proteins. Cereal Chemistry, 2020, 97, 949-957.	2.2	25
34	Identification of Metabolite and Lipid Profiles in a Segregating Peach Population Associated with Mealiness in Prunus persica (L.) Batsch. Metabolites, 2020, 10, 154.	2.9	44
35	Relevant physicochemical properties and metabolites with functional properties of two commercial varieties of Peruvian (i>Pouteria lucuma (i). Journal of Food Processing and Preservation, 2020, 44, e14479.	2.0	3
36	Metabolite Fruit Profile Is Altered in Response to Source–Sink Imbalance and Can Be Used as an Early Predictor of Fruit Quality in Nectarine. Frontiers in Plant Science, 2020, 11, 604133.	3.6	9

#	Article	IF	CITATIONS
37	Primary Metabolism in Avocado Fruit. Frontiers in Plant Science, 2019, 10, 795.	3.6	45
38	Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. Journal of Food Science and Technology, 2019, 56, 2909-2924.	2.8	22
39	Integration of proteomics and metabolomics data of early and middle season Hass avocados under heat treatment. Food Chemistry, 2019, 289, 512-521.	8.2	35
40	Postharvest storage and cooking techniques affect the stability of glucosinolates and myrosinase activity of Andean mashua tubers (<i>Tropaeolum tuberosum</i>). International Journal of Food Science and Technology, 2019, 54, 2387-2395.	2.7	9
41	Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLoS ONE, 2019, 14, e0212586.	2.5	14
42	De novo assembly of Persea americana cv. â€~Hass' transcriptome during fruit development. BMC Genomics, 2019, 20, 108.	2.8	20
43	Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated With Fruit Flesh Softening Rate in Peach [Prunus persica (L.) Batsch]. Frontiers in Plant Science, 2019, 10, 1581.	3.6	41
44	The increase in electrical conductivity of nutrient solution enhances compositional and sensory properties of tomato fruit cv. Patr \tilde{A}^3 n. Scientia Horticulturae, 2019, 244, 388-398.	3.6	10
45	Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT - Food Science and Technology, 2018, 95, 116-122.	5.2	18
46	Enhanced antioxidant properties of tara (<i>Caesalpinia spinosa</i>) gallotannins by thermal hydrolysis and its synergistic effects with αâ€tocopherol, ascorbyl palmitate, and citric acid on sacha inchi (<i>Plukenetia volubilis</i>) oil. Journal of Food Process Engineering, 2018, 41, e12613.	2.9	9
47	Obtaining of peptides with inÂvitro antioxidant and angiotensin IÂconverting enzyme inhibitory activities from cañihua protein (Chenopodium pallidicaule Aellen). Journal of Cereal Science, 2018, 83, 139-146.	3.7	29
48	Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness. Food Chemistry, 2018, 268, 492-497.	8.2	12
49	Bioactive Potential of Andean Fruits, Seeds, and Tubers. Advances in Food and Nutrition Research, 2018, 84, 287-343.	3.0	40
50	Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice. Journal of Microbiology and Biotechnology, 2018, 28, 1247-1259.	2.1	15
51	Optimized Methodology for Alkaline and Enzymeâ€Assisted Extraction of Protein from Sacha Inchi (<i>Plukenetia volubilis</i>) Kernel Cake. Journal of Food Process Engineering, 2017, 40, e12412.	2.9	28
52	Optimisation of extraction conditions and thermal properties of protein from the Andean pseudocereal cañihua (<i>Chenopodium pallidicaule</i> Aellen). International Journal of Food Science and Technology, 2017, 52, 1026-1034.	2.7	10
53	New insights into the heterogeneous ripening in Hass avocado via LC–MS/MS proteomics. Postharvest Biology and Technology, 2017, 132, 51-61.	6.0	38
54	Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chemistry, 2017, 232, 664-672.	8.2	78

#	Article	IF	CITATIONS
55	Effect of Yacon (<i>Smallanthus sonchifolius</i>) fructooligosaccharide purification technique using activated charcoal or ion exchange fixed bed column on recovery, purity and sugar content. International Journal of Food Science and Technology, 2017, 52, 2637-2646.	2.7	11
56	Effects of heat shock and nitrogen shock pre-treatments on ripening heterogeneity of Hass avocados stored in controlled atmosphere. Scientia Horticulturae, 2017, 225, 408-415.	3.6	17
57	Postharvest Proteomics of Perishables. , 2017, , 3-16.		6
58	Bioactive compounds of loquat (Eriobotrya japonica Lindl.) cv. Golden Nugget and analysis of the in vitro functionality for hyperglycemia management., 2017, 44, 271-283.		11
59	A STATISTICAL APPROACH FOR ASSESSING THE HETEROGENEITY OF HASS AVOCADOS SUBJECTED TO DIFFERENT POSTHARVEST ABIOTIC STRESSES. Ciencia E Investigacion Agraria, 2016, 43, 2-2.	0.2	3
60	Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present inPlukenetia huayllabambanaSeed. Journal of Chemistry, 2016, 2016, 1-10.	1.9	22
61	NUTRITIONAL AND FUNCTIONAL CHARACTERIZATION OF WILD AND CULTIVATED Sarcocornia neei GROWN IN CHILE. Ciencia E Investigacion Agraria, 2016, 43, 11-11.	0.2	11
62	Stability of fructooligosaccharides, sugars and colour of yacon (<i>Smallanthus sonchifolius</i>) roots during blanching and drying. International Journal of Food Science and Technology, 2016, 51, 1177-1185.	2.7	24
63	Sacha inchi (<i>Plukenetia volubilis</i> L.) shell: an alternative source of phenolic compounds and antioxidants. International Journal of Food Science and Technology, 2016, 51, 986-993.	2.7	19
64	Characterization of main primary and secondary metabolites and in vitro antioxidant and antihyperglycemic properties in the mesocarp of three biotypes of Pouteria lucuma. Food Chemistry, 2016, 190, 403-411.	8.2	27
65	Impact of postharvest ripening strategies on â€~Hass' avocado fatty acid profiles. South African Journal of Botany, 2016, 103, 32-35.	2.5	39
66	Reduction of cold damage during cold storage of Hass avocado by a combined use of pre-conditioning and waxing. Scientia Horticulturae, 2016, 200, 119-124.	3.6	6
67	Factors associated with postharvest ripening heterogeneity of â€~Hass' avocados (<i>Persea) Tj ETQq1 1 0.78</i>	4314 rgB1 0.4	JOverloc <mark>k</mark>
68	Advances and current challenges in understanding postharvest abiotic stresses in perishables. Postharvest Biology and Technology, 2015, 107, 77-89.	6.0	47
69	Optimised methodology for the extraction of protein from quinoa (<i>Chenopodium quinoa</i>) Tj ETQq1 1 0.78	4314 rgBT 2.7	Overlock
70	Antioxidants from Mashua (<i>Tropaeolum tuberosum</i>) Control Lipid Oxidation in Sacha Inchi (<i>Plukenetia volubilis</i> â€L.) Oil and Raw Ground Pork Meat. Journal of Food Processing and Preservation, 2015, 39, 2612-2619.	2.0	11
71	Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chemistry, 2015, 173, 1203-1206.	8.2	49
72	Metabolomics analysis of postharvest ripening heterogeneity of †Hass†avocadoes. Postharvest Biology and Technology, 2014, 92, 172-179.	6.0	59

#	Article	IF	Citations
73	Fundamental aspects of postharvest heat treatments. Horticulture Research, 2014, 1, 14030.	6.3	62
74	Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 2013, 141, 1732-1739.	8.2	136
75	Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Industrial Crops and Products, 2013, 49, 747-754.	5. 2	59
76	Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 2013, 47, 145-152.	5.2	96
77	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	5.4	70
78	Post-harvest proteomics and food security. Proteomics, 2013, 13, 1772-1783.	2.2	29
79	Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods. Industrial Crops and Products, 2013, 47, 168-175.	5.2	49
80	Reduction of Botrytis cinerea incidence in cut roses (Rosa hybrida L.) during long term transport in dry conditions. Postharvest Biology and Technology, 2013, 76, 135-138.	6.0	11
81	An optimal harvest date prediction tool for long-term storage of red currants. International Journal of Postharvest Technology and Innovation, 2013, 3, 5.	0.1	O
82	Primary Separation: 2-D Electrophoresis. , 2013, , 51-67.		0
83	Phenolic compounds from Andean mashua (<i>Tropaeolum tuberosum</i>) tubers display protection against soybean oil oxidation. Food Science and Technology International, 2012, 18, 271-280.	2.2	11
84	Translational plant proteomics: A perspective. Journal of Proteomics, 2012, 75, 4588-4601.	2.4	63
85	Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chemistry, 2012, 135, 1592-1599.	8.2	136
86	Current Challenges in Detecting Food Allergens by Shotgun and Targeted Proteomic Approaches: A Case Study on Traces of Peanut Allergens in Baked Cookies. Nutrients, 2012, 4, 132-150.	4.1	52
87	Where systems biology meets postharvest. Postharvest Biology and Technology, 2011, 62, 223-237.	6.0	49
88	Characterisation of phenolic compounds of Inca mu $\tilde{A}\pm a$ (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chemistry, 2011, 128, 711-716.	8.2	35
89	Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chemistry, 2011, 127, 1576-1583.	8.2	71
90	Impact of cooking and drying on the phenolic, carotenoid contents and in vitro antioxidant capacity of Andean Arracacha (Arracacia xanthorrhiza Bancr.) root. Food Science and Technology International, 2011, 17, 319-330.	2.2	12

#	Article	IF	Citations
91	POSTHARVEST PROTEOMICS. Acta Horticulturae, 2010, , 75-80.	0.2	O
92	POSTHARVEST METABOLOMICS. Acta Horticulturae, 2010, , 369-376.	0.2	4
93	Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.)) Tj ETQq1 1 0.	.784314 r _j 8 . 2	gBT /Overloc 122
94	Proteomics for the Food Industry: Opportunities and Challenges. Critical Reviews in Food Science and Nutrition, 2010, 50, 680-692.	10.3	40
95	Metabolic profiling of â€~Conference' pears under low oxygen stress. Postharvest Biology and Technology, 2009, 51, 123-130.	6.0	133
96	Nutritional and functional characterisation of Andean chicuru (Stangea rhizanta). Food Chemistry, 2009, 112, 63-70.	8.2	11
97	HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 2009, 113, 1243-1251.	8.2	66
98	Kinetics of extraction of reducing sugar during blanching of potato slices. Journal of Food Engineering, 2009, 91, 443-447.	5.2	33
99	Gel-Based Proteomics Approach to the Study of Metabolic Changes in Pear Tissue during Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 6997-7004.	5.2	46
100	Treatment of missing values for multivariate statistical analysis of gelâ€based proteomics data. Proteomics, 2008, 8, 1371-1383.	2.2	56
101	Phenolic profiles of andean mashua (Tropaeolum tuberosum RuÃz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry, 2008, 106, 1285-1298.	8.2	62
102	Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry, 2008, 111, 98-105.	8.2	34
103	Physiological implications of controlled atmosphere storage of  Conference' pears (Pyrus communis) Tj ET	Qq1 _{.0} 1 0.7	84314 rgBT
104	Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry, 2007, 100, 956-963.	8.2	126
105	Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 2007, 79, 786-793.	5.2	79
106	Physical properties of pre-treated potato chips. Journal of Food Engineering, 2007, 79, 1474-1482.	5. 2	47
107	Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum) Tj ETQq1 :	1 0,78431 7.9	4 rgBT /Over
108	Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics, 2007, 7, 2083-2099.	2.2	74

#	Article	IF	CITATIONS
109	Antimutagenic and Antioxidant Properties of Phenolic Fractions from Andean Purple Corn (Zea) Tj ETQq1 1 0.784	314 rgBT	/Overlock 10
110	High-Performance Liquid Chromatography with Photodiode Array Detection (HPLCâ^'DAD)/HPLCâ^'Mass Spectrometry (MS) Profiling of Anthocyanins from Andean Mashua Tubers (Tropaeolum) Tj ETQq0 0 0 rgBT /Over	logk 10 Tf	59,702 Td (1
	Agricultural and Food Chemistry, 2006, 54, 7089-7097.		
111	Andean Yacon Root (Smallanthus sonchifoliusPoepp. Endl) Fructooligosaccharides as a Potential Novel Source of Prebiotics. Journal of Agricultural and Food Chemistry, 2003, 51, 5278-5284.	5.2	94