Romina Pedreschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359635/publications.pdf Version: 2024-02-01

		101543	149698
111	3,619	36	56
papers	citations	h-index	g-index
112 all docs	112 docs citations	112 times ranked	4006 citing authors

#	Article	IF	CITATIONS
1	Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum) Tj ETQq1	1 0,78431 7.9	4 rgBT /Overl
2	Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chemistry, 2012, 135, 1592-1599.	8.2	136
3	Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 2013, 141, 1732-1739.	8.2	136
4	Metabolic profiling of â€ [~] Conference' pears under low oxygen stress. Postharvest Biology and Technology, 2009, 51, 123-130.	6.0	133
5	Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry, 2007, 100, 956-963.	8.2	126
6	Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.)) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
7	Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 2013, 47, 145-152.	5.2	96
8	Andean Yacon Root (Smallanthus sonchifoliusPoepp. Endl) Fructooligosaccharides as a Potential Novel Source of Prebiotics. Journal of Agricultural and Food Chemistry, 2003, 51, 5278-5284.	5.2	94
9	Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 2007, 79, 786-793.	5.2	79
10	Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chemistry, 2017, 232, 664-672.	8.2	78
11	Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics, 2007, 7, 2083-2099.	2.2	74
12	Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chemistry, 2011, 127, 1576-1583.	8.2	71
13	Antimutagenic and Antioxidant Properties of Phenolic Fractions from Andean Purple Corn (Zea) Tj ETQq1 1 0.78	4314 rgBT 5.2	/Qverlock 10

14	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	5.4	70
15	HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 2009, 113, 1243-1251.	8.2	66
16	Translational plant proteomics: A perspective. Journal of Proteomics, 2012, 75, 4588-4601.	2.4	63
17	Phenolic profiles of andean mashua (Tropaeolum tuberosum RuÃz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry, 2008, 106, 1285-1298.	8.2	62
18	Fundamental aspects of postharvest heat treatments. Horticulture Research, 2014, 1, 14030.	6.3	62

#	Article	IF	CITATIONS
19	Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Industrial Crops and Products, 2013, 49, 747-754.	5.2	59
20	Metabolomics analysis of postharvest ripening heterogeneity of â€~Hass' avocadoes. Postharvest Biology and Technology, 2014, 92, 172-179.	6.0	59
21	Treatment of missing values for multivariate statistical analysis of gelâ€based proteomics data. Proteomics, 2008, 8, 1371-1383.	2.2	56
22	Physiological implications of controlled atmosphere storage of â€~Conference' pears (Pyrus communis) Tj E	TQq0 0 0 r 6.0	gBT_/Overlock
23	Current Challenges in Detecting Food Allergens by Shotgun and Targeted Proteomic Approaches: A Case Study on Traces of Peanut Allergens in Baked Cookies. Nutrients, 2012, 4, 132-150.	4.1	52
24	Where systems biology meets postharvest. Postharvest Biology and Technology, 2011, 62, 223-237.	6.0	49
25	Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods. Industrial Crops and Products, 2013, 47, 168-175.	5.2	49
26	Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chemistry, 2015, 173, 1203-1206.	8.2	49
27	Physical properties of pre-treated potato chips. Journal of Food Engineering, 2007, 79, 1474-1482.	5.2	47
28	Advances and current challenges in understanding postharvest abiotic stresses in perishables. Postharvest Biology and Technology, 2015, 107, 77-89.	6.0	47
29	Gel-Based Proteomics Approach to the Study of Metabolic Changes in Pear Tissue during Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 6997-7004.	5.2	46
30	Primary Metabolism in Avocado Fruit. Frontiers in Plant Science, 2019, 10, 795.	3.6	45
31	Identification of Metabolite and Lipid Profiles in a Segregating Peach Population Associated with Mealiness in Prunus persica (L.) Batsch. Metabolites, 2020, 10, 154.	2.9	44
32	Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated With Fruit Flesh Softening Rate in Peach [Prunus persica (L.) Batsch]. Frontiers in Plant Science, 2019, 10, 1581.	3.6	41
33	Proteomics for the Food Industry: Opportunities and Challenges. Critical Reviews in Food Science and Nutrition, 2010, 50, 680-692.	10.3	40
34	Bioactive Potential of Andean Fruits, Seeds, and Tubers. Advances in Food and Nutrition Research, 2018, 84, 287-343.	3.0	40
35	Impact of postharvest ripening strategies on â€~Hass' avocado fatty acid profiles. South African Journal of Botany, 2016, 103, 32-35.	2.5	39
36	New insights into the heterogeneous ripening in Hass avocado via LC–MS/MS proteomics. Postharvest Biology and Technology, 2017, 132, 51-61.	6.0	38

#	Article	IF	CITATIONS
37	High-Performance Liquid Chromatography with Photodiode Array Detection (HPLCâ [^])DAD)/HPLCâ [^] Mass Spectrometry (MS) Profiling of Anthocyanins from Andean Mashua Tubers (Tropaeolum) Tj ETQq1 1 0.784314 r	gBT_/Overl	ock_10 Tf 50
38	Agricultural and Food Chemistry, 2006, 54, 7089-7097. Characterisation of phenolic compounds of Inca muña (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chemistry, 2011, 128, 711-716.	8.2	35
39	Integration of proteomics and metabolomics data of early and middle season Hass avocados under heat treatment. Food Chemistry, 2019, 289, 512-521.	8.2	35
40	Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry, 2008, 111, 98-105.	8.2	34
41	Kinetics of extraction of reducing sugar during blanching of potato slices. Journal of Food Engineering, 2009, 91, 443-447.	5.2	33
42	Factors associated with postharvest ripening heterogeneity of â€~Hass' avocados (<i>Persea) Tj ETQq0 0 0 r</i>	gBT /Overl	oc <u></u> 10 Tf 50
43	Post-harvest proteomics and food security. Proteomics, 2013, 13, 1772-1783.	2.2	29
44	Obtaining of peptides with inÂvitro antioxidant and angiotensin lÂconverting enzyme inhibitory activities from cañihua protein (Chenopodium pallidicaule Aellen). Journal of Cereal Science, 2018, 83, 139-146.	3.7	29
45	Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers. Critical Reviews in Food Science and Nutrition, 2021, 61, 649-665.	10.3	29
46	Optimized Methodology for Alkaline and Enzymeâ€Assisted Extraction of Protein from Sacha Inchi (<i>Plukenetia volubilis</i>) Kernel Cake. Journal of Food Process Engineering, 2017, 40, e12412.	2.9	28
47	Optimised methodology for the extraction of protein from quinoa (<i>Chenopodium quinoa</i>) Tj ETQq1 1 0.7	84314 rgB 2.7	BT <u> O</u> verlock
48	Characterization of main primary and secondary metabolites and in vitro antioxidant and antihyperglycemic properties in the mesocarp of three biotypes of Pouteria lucuma. Food Chemistry, 2016, 190, 403-411.	8.2	27
49	<i>In vitro</i> antioxidant and angiotensin lâ€converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (<i>Chenopodium quinoa</i>) and kiwicha (<i>Amaranthus caudatus</i>) proteins. Cereal Chemistry, 2020, 97, 949-957.	2.2	25
50	Stability of fructooligosaccharides, sugars and colour of yacon (<i>Smallanthus sonchifolius</i>) roots during blanching and drying. International Journal of Food Science and Technology, 2016, 51, 1177-1185.	2.7	24
51	Bioactive compounds and antioxidant activity from harvest to edible ripeness of avocado cv. Hass (<i>Persea americana</i>) throughout the harvest seasons. International Journal of Food Science and Technology, 2020, 55, 2208-2218.	2.7	24
52	Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present inPlukenetia huayllabambanaSeed. Journal of Chemistry, 2016, 2016, 1-10.	1.9	22
53	Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. Journal of Food Science and Technology, 2019, 56, 2909-2924.	2.8	22
54	De novo assembly of Persea americana cv. â€~Hass' transcriptome during fruit development. BMC Genomics, 2019, 20, 108.	2.8	20

Romina Pedreschi

#	Article	IF	CITATIONS
55	Sacha inchi (<i>Plukenetia volubilis</i> L.) shell: an alternative source of phenolic compounds and antioxidants. International Journal of Food Science and Technology, 2016, 51, 986-993.	2.7	19
56	Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT - Food Science and Technology, 2018, 95, 116-122.	5.2	18
57	Can metabolites at harvest be used as physiological markers for modelling the softening behaviour of Chilean "Hass―avocados destined to local and distant markets?. Postharvest Biology and Technology, 2021, 174, 111457.	6.0	18
58	Effects of heat shock and nitrogen shock pre-treatments on ripening heterogeneity of Hass avocados stored in controlled atmosphere. Scientia Horticulturae, 2017, 225, 408-415.	3.6	17
59	Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice. Journal of Microbiology and Biotechnology, 2018, 28, 1247-1259.	2.1	15
60	Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLoS ONE, 2019, 14, e0212586.	2.5	14
61	Enzymeâ€assisted hydrolysates from sacha inchi (<i>Plukenetia volubilis</i>) protein with in vitro antioxidant and antihypertensive properties. Journal of Food Processing and Preservation, 2020, 44, e14969.	2.0	14
62	Volatile Organic Compounds (VOCs) Produced by Gluconobacter cerinus and Hanseniaspora osmophila Displaying Control Effect against Table Grape-Rot Pathogens. Antibiotics, 2021, 10, 663.	3.7	14
63	Vacuum impregnation of apple slices with Yacon (<i>Smallanthus sonchifolius</i> Poepp. & Endl) fructooligosaccharides to enhance the functional properties of the fruit snack. International Journal of Food Science and Technology, 2021, 56, 392-401.	2.7	14
64	Primary and Phenolic Metabolites Analyses, In Vitro Health-Relevant Bioactivity and Physical Characteristics of Purple Corn (Zea mays L.) Grown at Two Andean Geographical Locations. Metabolites, 2021, 11, 722.	2.9	13
65	Impact of cooking and drying on the phenolic, carotenoid contents and in vitro antioxidant capacity of Andean Arracacha (Arracacia xanthorrhiza Bancr.) root. Food Science and Technology International, 2011, 17, 319-330.	2.2	12
66	Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness. Food Chemistry, 2018, 268, 492-497.	8.2	12
67	Physico-chemical characterization, metabolomic profile and in vitro antioxidant, antihypertensive, antiobesity and antidiabetic properties of Andean elderberry (Sambucus nigra subsp. peruviana). Journal of Berry Research, 2020, 10, 193-208.	1.4	12
68	Nutritional and functional characterisation of Andean chicuru (Stangea rhizanta). Food Chemistry, 2009, 112, 63-70.	8.2	11
69	Phenolic compounds from Andean mashua (<i>Tropaeolum tuberosum</i>) tubers display protection against soybean oil oxidation. Food Science and Technology International, 2012, 18, 271-280.	2.2	11
70	Reduction of Botrytis cinerea incidence in cut roses (Rosa hybrida L.) during long term transport in dry conditions. Postharvest Biology and Technology, 2013, 76, 135-138.	6.0	11
71	Antioxidants from Mashua (<i>Tropaeolum tuberosum</i>) Control Lipid Oxidation in Sacha Inchi (<i>Plukenetia volubilis</i> â€L.) Oil and Raw Ground Pork Meat. Journal of Food Processing and Preservation, 2015, 39, 2612-2619.	2.0	11
72	NUTRITIONAL AND FUNCTIONAL CHARACTERIZATION OF WILD AND CULTIVATED Sarcocornia neei GROWN IN CHILE. Ciencia E Investigacion Agraria, 2016, 43, 11-11.	0.2	11

#	Article	IF	CITATIONS
73	Effect of Yacon (<i>Smallanthus sonchifolius</i>) fructooligosaccharide purification technique using activated charcoal or ion exchange fixed bed column on recovery, purity and sugar content. International Journal of Food Science and Technology, 2017, 52, 2637-2646.	2.7	11

Unravelling factors associated with $\hat{a} \in \tilde{b}$ lackspot $\hat{a} \in \tilde{b}$ disorder in stored Hass avocado (<i>Persea) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

75	Bioactive compounds of loquat (Eriobotrya japonica Lindl.) cv. Golden Nugget and analysis of the in vitro functionality for hyperglycemia management. , 2017, 44, 271-283.		11
76	Optimisation of extraction conditions and thermal properties of protein from the Andean pseudocereal cañihua (<i>Chenopodium pallidicaule</i> Aellen). International Journal of Food Science and Technology, 2017, 52, 1026-1034.	2.7	10
77	The increase in electrical conductivity of nutrient solution enhances compositional and sensory properties of tomato fruit cv. Patrón. Scientia Horticulturae, 2019, 244, 388-398.	3.6	10
78	Proteomic analysis of mashua (Tropaeolum tuberosum) tubers subjected to postharvest treatments. Food Chemistry, 2020, 305, 125485.	8.2	10
79	Multifunctional in vitro bioactive properties: Antioxidant, antidiabetic, and antihypertensive of protein hydrolyzates from tarwi (<i>Lupinus mutabilis</i> Sweet) obtained by enzymatic biotransformation. Cereal Chemistry, 2021, 98, 423-433.	2.2	10
80	Diffusible Compounds Produced by Hanseniaspora osmophila and Gluconobacter cerinus Help to Control the Causal Agents of Gray Rot and Summer Bunch Rot of Table Grapes. Antibiotics, 2021, 10, 664.	3.7	10
81	Enhanced antioxidant properties of tara (<i>Caesalpinia spinosa</i>) gallotannins by thermal hydrolysis and its synergistic effects with αâ€tocopherol, ascorbyl palmitate, and citric acid on sacha inchi (<i>Plukenetia volubilis</i>) oil. Journal of Food Process Engineering, 2018, 41, e12613.	2.9	9
82	Postharvest storage and cooking techniques affect the stability of glucosinolates and myrosinase activity of Andean mashua tubers (<i>Tropaeolum tuberosum</i>). International Journal of Food Science and Technology, 2019, 54, 2387-2395.	2.7	9
83	Evaluation of aerial and root plant growth behavior, water and nutrient use efficiency and carbohydrate dynamics for Hass avocado grown in a soilless and protected growing system. Scientia Horticulturae, 2021, 277, 109830.	3.6	9
84	Cell wall and metabolite composition of sweet cherry fruits from two cultivars with contrasting susceptibility to surface pitting during storage. Food Chemistry, 2021, 342, 128307.	8.2	9
85	Metabolite Fruit Profile Is Altered in Response to Source–Sink Imbalance and Can Be Used as an Early Predictor of Fruit Quality in Nectarine. Frontiers in Plant Science, 2020, 11, 604133.	3.6	9
86	Transcriptome and hormone analyses reveals differences in physiological age of ′Hass′ avocado fruit. Postharvest Biology and Technology, 2022, 185, 111806.	6.0	8
87	Image Analysis Reveals That Lenticel Damage Does Not Result in Black Spot Development but Enhances Dehydration in Persea americana Mill. cv. Hass during Prolonged Storage. Agronomy, 2021, 11, 1699.	3.0	7
88	Controlled Atmosphere Storage Alleviates Hass Avocado Black Spot Disorder. Horticulturae, 2022, 8, 369.	2.8	7
89	Reduction of cold damage during cold storage of Hass avocado by a combined use of pre-conditioning and waxing. Scientia Horticulturae, 2016, 200, 119-124.	3.6	6

Romina Pedreschi

#	Article	IF	CITATIONS
91	The Effect of Hydrothermal Treatment on Metabolite Composition of Hass Avocados Stored in a Controlled Atmosphere. Plants, 2021, 10, 2427.	3.5	6
92	Metabolomic and biochemical analysis of mesocarp tissues from table grape berries with contrasting firmness reveals cell wall modifications associated to harvest and cold storage. Food Chemistry, 2022, 389, 133052.	8.2	6
93	Short vs. Long-Distance Avocado Supply Chains: Life Cycle Assessment Impact Associated to Transport and Effect of Fruit Origin and Supply Conditions Chain on Primary and Secondary Metabolites. Foods, 2022, 11, 1807.	4.3	6
94	Biochemical and phenotypic characterization of sweet cherry (Prunus avium L.) cultivars with induced surface pitting. Postharvest Biology and Technology, 2021, 175, 111494.	6.0	5
95	Pre-Anthesis Cytokinin Applications Increase Table Grape Berry Firmness by Modulating Cell Wall Polysaccharides. Plants, 2021, 10, 2642.	3.5	5
96	Effect of the Integrated Addition of a Red Tara Pods (Caesalpinia spinosa) Extract and NaCl over the Neo-Formed Contaminants Content and Sensory Properties of Crackers. Molecules, 2022, 27, 1020.	3.8	5
97	POSTHARVEST METABOLOMICS. Acta Horticulturae, 2010, , 369-376.	0.2	4
98	Prolonged on-tree maturation vs. cold storage of Hass avocado fruit: Changes in metabolites of bioactive interest at edible ripeness. Food Chemistry, 2022, 394, 133447.	8.2	4
99	A STATISTICAL APPROACH FOR ASSESSING THE HETEROGENEITY OF HASS AVOCADOS SUBJECTED TO DIFFERENT POSTHARVEST ABIOTIC STRESSES. Ciencia E Investigacion Agraria, 2016, 43, 2-2.	0.2	3
100	Relevant physicochemical properties and metabolites with functional properties of two commercial varieties of Peruvian <i>Pouteria lucuma</i> . Journal of Food Processing and Preservation, 2020, 44, e14479.	2.0	3
101	Unravelling the Molecular Regulation Mechanisms of Slow Ripening Trait in Prunus persica. Plants, 2021, 10, 2380.	3.5	3
102	Physicochemical and bioactive compounds at edible ripeness of eleven varieties of avocado (<i>Persea) Tj ETQqO Technology, 2021, 56, 5040-5049.</i>	0 0 rgBT / 2.7	Overlock 10 2
103	Comparison of conventional and ultrasoundâ€assisted extractions of polyphenols from Inca muña (<i>Clinopodium bolivianum</i>) and their characterization using UPLC–PDAâ€ESI–Q/TOF–MS ⁿ technique. Journal of Food Processing and Preservation, 2022, 46.	2.0	2
104	A Comparison of Immediate and Short-Term Defensive Responses to <i>Phytophthora</i> Species Infection in Both Susceptible and Resistant Walnut Rootstocks. Plant Disease, 2020, 104, 921-929.	1.4	1
105	Metabolites, volatile compounds and in vitro functional properties during growth and commercial harvest of Peruvian lucuma (Pouteria lucuma). Food Bioscience, 2021, 40, 100882.	4.4	1
106	Proteomics analysis reveals new insights into surface pitting of sweet cherry cultivars displaying contrasting susceptibility. Journal of Horticultural Science and Biotechnology, 2022, 97, 615-625.	1.9	1
107	Differential Hydraulic Properties and Primary Metabolism in Fine Root of Avocado Trees Rootstocks. Plants, 2022, 11, 1059.	3.5	1
108	Response Mechanisms of "Hass―Avocado to Sequential 1–methylcyclopropene Applications at Different Maturity Stages during Cold Storage. Plants, 2022, 11, 1781.	3.5	1

#	Article	IF	CITATIONS
109	POSTHARVEST PROTEOMICS. Acta Horticulturae, 2010, , 75-80.	0.2	0
110	An optimal harvest date prediction tool for long-term storage of red currants. International Journal of Postharvest Technology and Innovation, 2013, 3, 5.	0.1	0
111	Primary Separation: 2-D Electrophoresis. , 2013, , 51-67.		0