Alexander Eychmüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359309/publications.pdf

Version: 2024-02-01

378 papers 27,616 citations

85 h-index 153 g-index

396 all docs

396 docs citations

396 times ranked 27838 citing authors

#	Article	IF	CITATIONS
1	Thiol-Capping of CdTe Nanocrystals:  An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B, 2002, 106, 7177-7185.	1.2	1,485
2	Brown adipose tissue activity controls triglyceride clearance. Nature Medicine, 2011, 17, 200-205.	15.2	1,367
3	Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:  State-of-the-Art. Journal of Physical Chemistry C, 2007, 111, 14628-14637.	1.5	703
4	Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. Journal of Physical Chemistry B, 1998, 102, 8360-8363.	1.2	678
5	Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chemical Reviews, 2015, 115, 8896-8943.	23.0	576
6	Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals. Journal of Physical Chemistry B, 1999, 103, 3065-3069.	1.2	565
7	Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Analytical Chemistry, 2009, 81, 6285-6294.	3.2	556
8	Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment. Physical Review B, 1994, 49, 17072-17078.	1,1	386
9	Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications. Small, 2007, 3, 536-557.	5.2	385
10	Structure and Photophysics of Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2000, 104, 6514-6528.	1.2	350
11	Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15â^'300 nm. Journal of Physical Chemistry C, 2011, 115, 4502-4506.	1.5	347
12	Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nature Materials, 2018, 17, 827-833.	13.3	344
13	Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. Nano Letters, 2008, 8, 4588-4592.	4.5	333
14	Noble Metal Aerogelsâ€"Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	7.6	313
15	Colloidally Prepared HgTe Nanocrystals with Strong Room-Temperature Infrared Luminescence. Advanced Materials, 1999, 11, 552-555.	11.1	312
16	Lightâ€Emitting Diodes with Semiconductor Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 6538-6549.	7.2	305
17	Modern Inorganic Aerogels. Angewandte Chemie - International Edition, 2017, 56, 13200-13221.	7.2	303
18	Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure and Applied Chemistry, 2000, 72, 179-188.	0.9	292

#	Article	IF	CITATIONS
19	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286
20	Hydrogels and Aerogels from Noble Metal Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 9731-9734.	7.2	271
21	Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:  From Water to Nonpolar Organic Solvents. Nano Letters, 2002, 2, 803-806.	4.5	247
22	Colloidal semiconductor nanocrystals: the aqueous approach. Chemical Society Reviews, 2013, 42, 2905-2929.	18.7	247
23	Bimetallic Aerogels: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 9849-9852.	7.2	246
24	Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 2011, 6, 632-647.	6.2	245
25	Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments. Chemical Physics Letters, 1993, 203, 271-276.	1.2	234
26	A quantum dot quantum well: CdS/HgS/CdS. Chemical Physics Letters, 1993, 208, 59-62.	1.2	219
27	Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 5905-5908.	1.2	216
28	Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1094-1100.	1.2	211
29	Size and Shape Control of Colloidally Synthesized IVâ^'VI Nanoparticulate Tin(II) Sulfide. Journal of the American Chemical Society, 2008, 130, 14978-14980.	6.6	207
30	EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of CdS Nanoparticles. Journal of Physical Chemistry B, 1997, 101, 2691-2701.	1.2	199
31	Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2015, 51, 7851-7854.	2.2	195
32	Shedding Light on Vacancy-Doped Copper Chalcogenides: Shape-Controlled Synthesis, Optical Properties, and Modeling of Copper Telluride Nanocrystals with Near-Infrared Plasmon Resonances. ACS Nano, 2013, 7, 4367-4377.	7.3	186
33	Chemically Tailoring Coal to Fluorescent Carbon Dots with Tuned Size and Their Capacity for Cu(II) Detection. Small, 2014, 10, 4926-4933.	5.2	186
34	Solid-State Anion Exchange Reactions for Color Tuning of CsPbX ₃ Perovskite Nanocrystals. Chemistry of Materials, 2016, 28, 9033-9040.	3.2	182
35	Factors Governing the Quality of Aqueous CdTe Nanocrystals:  Calculations and Experiment. Journal of Physical Chemistry B, 2006, 110, 19280-19284.	1.2	181
36	Highâ€Performance Electrocatalysis on Palladium Aerogels. Angewandte Chemie - International Edition, 2012, 51, 5743-5747.	7.2	181

#	Article	IF	Citations
37	Functionâ€Led Design of Aerogels: Selfâ€Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 13101-13105.	7.2	180
38	Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot. Pure and Applied Chemistry, 2000, 72, 295-307.	0.9	175
39	Bright Whiteâ€Light Emitting Manganese and Copper Coâ€Doped ZnSe Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 4432-4436.	7.2	173
40	Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces. ACS Nano, 2016, 10, 2559-2567.	7.3	165
41	Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nature Nanotechnology, 2009, 4, 193-201.	15.6	159
42	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
43	Colloidal Nanocrystal-Based Gels and Aerogels: Material Aspects and Application Perspectives. Journal of Physical Chemistry Letters, 2012, 3, 8-17.	2.1	155
44	Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 2963-2966.	7.2	154
45	The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. Journal of Chemical Physics, 1998, 108, 7807-7815.	1.2	153
46	High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO ₂ Nanosheets. Advanced Materials, 2012, 24, 2202-2206.	11.1	150
47	Multimetallic Aerogels by Template-Free Self-Assembly of Au, Ag, Pt, and Pd Nanoparticles. Chemistry of Materials, 2014, 26, 1074-1083.	3.2	148
48	Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2005, 17, 5731-5736.	3.2	147
49	Promoting Electrocatalysis upon Aerogels. Advanced Materials, 2019, 31, e1804881.	11.1	146
50	Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.	1.8	145
51	Ordered Macroporous Bimetallic Nanostructures: Design, Characterization, and Applications. Accounts of Chemical Research, 2008, 41, 244-253.	7.6	143
52	Colloidal Nanocrystals Embedded in Macrocrystals: Robustness, Photostability, and Color Purity. Nano Letters, 2012, 12, 5348-5354.	4.5	136
53	Kinetically Controlled Synthesis of PdNi Bimetallic Porous Nanostructures with Enhanced Electrocatalytic Activity. Small, 2015, 11, 1430-1434.	5 . 2	133
54	Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO ₂ Heterojunction Solar Cells. ACS Nano, 2012, 6, 3092-3099.	7.3	132

#	Article	lF	CITATIONS
55	A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 9032-9042.	1.5	131
56	Comparative Examination of the Stability of Semiconductor Quantum Dots in Various Biochemical Buffers. Journal of Physical Chemistry B, 2006, 110, 1959-1963.	1.2	128
57	Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 39-44.	2.3	127
58	Controlling the Growth of Palladium Aerogels with High-Performance toward Bioelectrocatalytic Oxidation of Glucose. Journal of the American Chemical Society, 2014, 136, 2727-2730.	6.6	124
59	Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small, 2016, 12, 2439-2442.	5.2	123
60	Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications. Journal of Materials Chemistry, 2000, 10, 2163-2166.	6.7	121
61	Unusual Ultraâ€Hydrophilic, Porous Carbon Cuboids for Atmosphericâ€Water Capture. Angewandte Chemie - International Edition, 2015, 54, 1941-1945.	7.2	119
62	Threeâ€Dimensional Selfâ€Assembly of Thiolâ€Capped CdTe Nanocrystals: Gels and Aerogels as Building Blocks for Nanotechnology. Advanced Materials, 2008, 20, 4257-4262.	11.1	116
63	Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries, 2018, 4, 7.	2.1	116
64	Fungal Templates for Nobleâ€Metal Nanoparticles and Their Application in Catalysis. Angewandte Chemie - International Edition, 2008, 47, 7876-7879.	7.2	112
65	3D Assembly of Semiconductor and Metal Nanocrystals: Hybrid CdTe/Au Structures with Controlled Content. Journal of the American Chemical Society, 2011, 133, 13413-13420.	6.6	112
66	ITOâ€Free, Smallâ€Molecule Organic Solar Cells on Sprayâ€Coated Copperâ€Nanowireâ€Based Transparent Electrodes. Advanced Energy Materials, 2014, 4, 1300737.	10.2	110
67	Highly Luminescent and Water-Resistant CsPbBr ₃ â€"CsPb ₂ Br ₅ Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine. ACS Nano, 2019, 13, 10386-10396.	7.3	110
68	Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters, 2006, 89, 253118.	1.5	109
69	Synthesis of Palladium Nanoparticles and Their Applications for Surface-Enhanced Raman Scattering and Electrocatalysis. Journal of Physical Chemistry C, 2010, 114, 21976-21981.	1.5	109
70	Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolutionÂand ethanol oxidation. Nature Communications, 2020, 11, 1590.	5.8	106
71	Large-Area (over 50 cm $\tilde{A}-$ 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters, 2012, 12, 3986-3993.	4.5	104
72	Emerging Hierarchical Aerogels: Selfâ€Assembly of Metal and Semiconductor Nanocrystals. Advanced Materials, 2018, 30, e1707518.	11.1	104

#	Article	IF	Citations
73	Enzymeâ€Encapsulating Quantum Dot Hydrogels and Xerogels as Biosensors: Multifunctional Platforms for Both Biocatalysis and Fluorescent Probing. Angewandte Chemie - International Edition, 2013, 52, 976-979.	7.2	103
74	Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis. Advanced Materials, 2017, 29, 1605254.	11.1	98
7 5	Boron Nitride Aerogels with Superâ€Flexibility Ranging from Liquid Nitrogen Temperature to 1000 °C. Advanced Functional Materials, 2019, 29, 1900188.	7.8	97
76	Hierarchical Carbideâ€Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energyâ€Storage Material. Advanced Energy Materials, 2014, 4, 1300645.	10.2	96
77	Discrete excitonic transitions in quantum-sized CdS particles. Chemical Physics Letters, 1990, 172, 201-204.	1.2	93
78	Typeâ€I and Typeâ€I Nanoscale Heterostructures Based on CdTe Nanocrystals: A Comparative Study. Small, 2008, 4, 1148-1152.	5. 2	91
79	Semiconductor Nanocrystal Assemblies:Â Experimental Pitfalls and a Simple Model of Particleâ^'Particle Interaction. Journal of Physical Chemistry B, 2002, 106, 5604-5608.	1.2	90
80	CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy. Nanoscale Research Letters, 2010, 5, 753-760.	3.1	90
81	Selective Fabrication of Ordered Bimetallic Nanostructures with Hierarchical Porosity. Angewandte Chemie - International Edition, 2005, 44, 5997-6001.	7.2	89
82	Engineering Selfâ€Supported Noble Metal Foams Toward Electrocatalysis and Beyond. Advanced Energy Materials, 2020, 10, 1901945.	10.2	89
83	Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13648-13658.	1.5	88
84	High-Rate Unidirectional Energy Transfer in Directly Assembled CdTe Nanocrystal Bilayers. Small, 2005, 1, 392-395.	5. 2	87
85	Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond. Science Advances, 2019, 5, eaaw4590.	4.7	87
86	Annealing of Nanometer-Sized Zinc Oxide Particles. Chemistry of Materials, 2002, 14, 1411-1417.	3.2	86
87	Designed Fabrication of Ordered Porous Au/Ag Nanostructured Films for Surface-Enhanced Raman Scattering Substrates. Langmuir, 2006, 22, 2605-2609.	1.6	86
88	Emerging Noble Metal Aerogels: State of the Art and a Look Forward. Matter, 2019, 1, 39-56.	5.0	84
89	Particleâ^'Particle Interactions in Semiconductor Nanocrystal Assemblies. Nano Letters, 2001, 1, 267-269.	4.5	83
90	Engineering Multimetallic Aerogels for pHâ€Universal HER and ORR Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903857.	10.2	83

#	Article	IF	CITATIONS
91	Switchable Photoluminescence of CdTe Nanocrystals by Temperature-Responsive Microgels. Langmuir, 2008, 24, 9820-9824.	1.6	81
92	Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials, 2016, 28, 6477-6483.	3.2	81
93	CdTe Nanocrystals Capped with a Tetrazolyl Analogue of Thioglycolic Acid: Aqueous Synthesis, Characterization, and Metal-Assisted Assembly. ACS Nano, 2010, 4, 4090-4096.	7.3	80
94	Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 237-241.	1.3	79
95	Synthesis and Characterization of Cadmium Phosphide Quantum Dots Emitting in the Visible Red to Near-Infrared. Journal of the American Chemical Society, 2010, 132, 5613-5615.	6.6	79
96	Diffusion- and reaction-limited cluster aggregation revisited. Physical Chemistry Chemical Physics, 2019, 21, 5723-5729.	1.3	79
97	Nanostructuring Noble Metals as Unsupported Electrocatalysts for Polymer Electrolyte Fuel Cells. Advanced Energy Materials, 2017, 7, 1700548.	10.2	76
98	Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals. Applied Physics Letters, 2007, 90, 034107.	1.5	75
99	Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage. Scientific Reports, 2015, 4, 4647.	1.6	75
100	3D Assembly of Allâ€Inorganic Colloidal Nanocrystals into Gels and Aerogels. Angewandte Chemie - International Edition, 2016, 55, 6334-6338.	7.2	75
101	The Assembling of Semiconductor Nanocrystals. European Journal of Inorganic Chemistry, 2005, 2005, 3613-3623.	1.0	74
102	Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaNâ^•GaN light emitting diodes for high-quality white light generation. Applied Physics Letters, 2008, 92, .	1.5	74
103	Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd _{1â^²x} Hg _x Te and PbS quantum dots – method- and material-inherent challenges. Nanoscale, 2015, 7, 133-143.	2.8	74
104	Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, F998-F1003.	1.3	74
105	Near-Infrared Electroluminescence from HgTe Nanocrystals. ChemPhysChem, 2004, 5, 1435-1438.	1.0	68
106	Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. Journal of Materials Chemistry, 2011, 21, 11550.	6.7	67
107	PbS–Organic Mesocrystals: The Relationship between Nanocrystal Orientation and Superlattice Array. Angewandte Chemie - International Edition, 2012, 51, 10776-10781.	7.2	67
108	Application of Polymer Quantum Dot-Enzyme Hybrids in the Biosensor Development and Test Paper Fabrication. Analytical Chemistry, 2012, 84, 5047-5052.	3.2	67

#	Article	IF	Citations
109	Mesocrystalline materials and the involvement of oriented attachment – a review. CrystEngComm, 2014, 16, 9408-9424.	1.3	67
110	Photoluminescence Quantum Yield and Matrix-Induced Luminescence Enhancement of Colloidal Quantum Dots Embedded in Ionic Crystals. Chemistry of Materials, 2014, 26, 3231-3237.	3.2	67
111	Investigations on the stability of thiol stabilized semiconductor nanoparticles. Physical Chemistry Chemical Physics, 2002, 4, 4747-4753.	1.3	66
112	Synthesis of Extremely Small CdSe and Bright Blue Luminescent CdSe/ZnS Nanoparticles by a Prefocused Hot-Injection Approach. Chemistry of Materials, 2009, 21, 1743-1749.	3.2	66
113	Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots. ACS Nano, 2011, 5, 1328-1334.	7.3	66
114	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie - International Edition, 2017, 56, 10707-10710.	7.2	65
115	Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies. Advanced Functional Materials, 2009, 19, 2805-2811.	7.8	64
116	A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale, 2015, 7, 2777-2783.	2.8	62
117	Layerâ€byâ€Layer Allâ€Inorganic Quantumâ€Dotâ€Based LEDs: A Simple Procedure with Robust Performance. Advanced Functional Materials, 2010, 20, 3298-3302.	7.8	61
118	Mixed Aerogels from Au and CdTe Nanoparticles. Advanced Functional Materials, 2013, 23, 1903-1911.	7.8	60
119	A Roadmap for 3D Metal Aerogels: Materials Design and Application Attempts. Matter, 2021, 4, 54-94.	5.0	60
120	Penetration of Amphiphilic Quantum Dots through Model and Cellular Plasma Membranes. ACS Nano, 2012, 6, 2150-2156.	7.3	59
121	Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes. Journal of Materials Chemistry, 2008, 18, 214-220.	6.7	58
122	Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures. Chemistry of Materials, 2010, 22, 2309-2314.	3.2	58
123	Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligandâ€Directed Modulation. Angewandte Chemie - International Edition, 2020, 59, 5706-5711.	7.2	58
124	Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1385-1404.	1.6	57
125	Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science, 2022, 375, 1422-1426.	6.0	57
126	Electron Transport in Particulate ZnO Electrodes:  A Simple Approach. Journal of Physical Chemistry B, 2002, 106, 8514-8523.	1.2	56

#	Article	IF	CITATIONS
127	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	1.7	56
128	Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials, 2015, 27, 4328-4337.	3.2	56
129	Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 8293-8300.	7.2	56
130	Quantum-sized HgS in contact with quantum-sized CdS colloids. Journal of Luminescence, 1992, 53, 113-115.	1.5	55
131	White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New Journal of Physics, 2008, 10, 023026.	1.2	55
132	Investigation of factors affecting the photoluminescence of colloidallyÂprepared HgTe nanocrystals. Journal of Materials Chemistry, 1999, 9, 2721-2722.	6.7	53
133	One-step aqueous synthesis of blue-emitting glutathione-capped ZnSe1â^'xTexalloyed nanocrystals. Chemical Communications, 2010, 46, 886-888.	2.2	53
134	Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB ₂ Nanoparticles. Chemistry of Materials, 2015, 27, 5106-5115.	3.2	52
135	Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals. Advanced Functional Materials, 2015, 25, 2638-2645.	7.8	52
136	Interconnection of Nanoparticles within 2D Superlattices of PbS/Oleic Acid Thin Films. Advanced Materials, 2014, 26, 3042-3049.	11.1	51
137	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	1.7	51
138	Self-Organized TiO ₂ /CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2015, 3, 909-919.	3.2	50
139	Enzymatic Biofuel Cells on Porous Nanostructures. Small, 2016, 12, 4649-4661.	5.2	50
140	Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS Nano, 2017, 11, 1559-1571.	7.3	49
141	Mechanical Properties of Metal Oxide Aerogels. Chemistry of Materials, 2018, 30, 145-152.	3.2	49
142	Disturbance-Promoted Unconventional and Rapid Fabrication of Self-Healable Noble Metal Gels for (Photo-)Electrocatalysis. Matter, 2020, 2, 908-920.	5.0	49
143	Covalent Linking of CdTe Nanocrystals to Amino-Functionalized Surfaces. ChemPhysChem, 2005, 6, 449-451.	1.0	48
144	Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot–Salt Mixed Crystals. ACS Applied Materials & Diversals, 7, 23364-23371.	4.0	48

#	Article	IF	CITATIONS
145	Simultaneous Identification of Spectral Properties and Sizes of Multiple Particles in Solution with Subnanometer Resolution. Angewandte Chemie - International Edition, 2016, 55, 11770-11774.	7.2	46
146	Anodically fabricated TiO ₂ –SnO ₂ nanotubes and their application in lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 5542-5552.	5.2	46
147	Photoemission Study of Onion Like Quantum Dot Quantum Well and Double Quantum Well Nanocrystals of CdS and HgSâ€. Journal of Physical Chemistry B, 2003, 107, 7486-7491.	1.2	45
148	Tuning shades of white light with multi-color quantum-dot–quantum-well emitters based on onion-like CdSe–ZnS heteronanocrystals. Nanotechnology, 2008, 19, 335203.	1.3	45
149	A Stepâ€Wise Approach for Dual Nanoparticle Patterning via Block Copolymer Selfâ€Assembly. Advanced Functional Materials, 2013, 23, 483-490.	7.8	45
150	Large-Scale Synthesis of Micrometer-Sized Silver Nanosheets. Journal of Physical Chemistry C, 2010, 114, 4495-4501.	1.5	44
151	The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein Journal of Nanotechnology, 2015, 6, 111-123.	1.5	44
152	CdSe Nanorod Synthesis: A New Approach. Small, 2007, 3, 1886-1888.	5.2	43
153	Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films. Nanotechnology, 2009, 20, 415302.	1.3	43
154	Decoration of Diatom Biosilica with Noble Metal and Semiconductor Nanoparticles (<10â€nm): Assembly, Characterization, and Applications. Chemistry - an Asian Journal, 2012, 7, 85-90.	1.7	43
155	Chloride and Indiumâ€Chlorideâ€Complex Inorganic Ligands for Efficient Stabilization of Nanocrystals in Solution and Doping of Nanocrystal Solids. Advanced Functional Materials, 2016, 26, 2163-2175.	7.8	43
156	3D assembly of preformed colloidal nanoparticles into gels and aerogels: function-led design. Chemical Communications, 2017, 53, 12608-12621.	2.2	42
157	Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers. Applied Physics Letters, 2009, 94, .	1.5	41
158	A Membraneless Glucose/O ₂ Biofuel Cell Based on Pd Aerogels. Chemistry - A European Journal, 2014, 20, 4380-4385.	1.7	41
159	Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance. Applied Physics Letters, 2016, 108, .	1.5	41
160	Quantum-Dot-Based (Aero)gels: Control of the Optical Properties. Journal of Physical Chemistry Letters, 2012, 3, 2188-2193.	2.1	40
161	Electrostatic and Covalent Interactions in CdTe Nanocrystalline Assemblies. Journal of Physical Chemistry B, 2005, 109, 20244-20250.	1.2	39
162	Ultrafast Interfacial Charge Carrier Dynamics in ZnSe and ZnSe/ZnS Core/Shell Nanoparticles: Influence of Shell Formation. Journal of Physical Chemistry C, 2008, 112, 2703-2710.	1.5	39

#	Article	IF	Citations
163	Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New Journal of Physics, 2008, 10, 083035.	1.2	39
164	One-pot aqueous synthesis of high quality near infrared emitting Cd1â^'xHgxTe nanocrystals. Journal of Materials Chemistry, 2009, 19, 9147.	6.7	39
165	Vapochromic Luminescence of a Zirconiumâ€Based Metal–Organic Framework for Sensing Applications. European Journal of Inorganic Chemistry, 2016, 2016, 4483-4489.	1.0	39
166	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	1.6	39
167	Cathodic and Anodic Material Diffusion in Polymer/Semiconductorâ€Nanocrystal Composite Devices. Advanced Materials, 2007, 19, 3364-3367.	11.1	38
168	Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS). ACS Nano, 2017, 11, 12174-12184.	7.3	38
169	Largely boosted methanol electrooxidation using ionic liquid/PdCu aerogels <i>via</i> interface engineering. Materials Horizons, 2020, 7, 2407-2413.	6.4	36
170	Covalently bound CdTe nanocrystals. Physical Chemistry Chemical Physics, 2002, 4, 1704-1706.	1.3	35
171	Temperature dependence of exciton transfer in hybrid quantum well/nanocrystal heterostructures. Applied Physics Letters, 2007, 91, .	1.5	35
172	Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers. Polymer, 2010, 51, 2661-2667.	1.8	35
173	High-Resolution Metal Nanopatterning by Means of Switchable Block Copolymer Templates. ACS Applied Materials & Discrete Samp; Interfaces, 2015, 7, 12559-12569.	4.0	35
174	Studying the Reactions of CdTe Nanostructures and Thin CdTe Films with Ag ⁺ and AuCl ₄ ^{â^²} . Journal of Physical Chemistry C, 2008, 112, 8881-8889.	1.5	34
175	Brightly Luminescent Core/Shell Nanoplatelets with Continuously Tunable Optical Properties. Advanced Optical Materials, 2019, 7, 1801478.	3 . 6	33
176	A Series of Double Well Semiconductor Quantum Dots. Nano Letters, 2001, 1, 663-665.	4.5	32
177	Structure-related optical properties of luminescent hetero-opals. Journal of Applied Physics, 2004, 95, 1029-1035.	1.1	32
178	Toward efficient blue-emitting thiol-capped Zn1â^'xCdxSe nanocrystals. Journal of Materials Chemistry, 2008, 18, 5142.	6.7	32
179	Study of the Attachment of Linker Molecules and Their Effects on the Charge Carrier Transfer at Lead Sulfide Nanoparticle Sensitized ZnO Substrates. Journal of Physical Chemistry C, 2011, 115, 13047-13055.	1.5	32
180	Humidity assisted annealing technique for transparent conductive silver nanowire networks. RSC Advances, 2015, 5, 19659-19665.	1.7	32

#	Article	IF	CITATIONS
181	Colloidal PbSe Nanoplatelets of Varied Thickness with Tunable Optical Properties. Chemistry of Materials, 2019, 31, 3803-3811.	3.2	32
182	Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 17189-17197.	5.2	32
183	Quantum Wells within Quantum Dots, a CdS/HgS Nanoheterostructure with Global and Local Confinement. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1343-1357.	0.9	31
184	Ultrasonically Assisted Synthesis of 3D Hierarchical Silver Microstructures. Journal of Physical Chemistry C, 2009, 113, 19258-19262.	1.5	31
185	Stimuli-responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores. Journal of Materials Chemistry B, 2013, 1, 1786.	2.9	31
186	Tetrazoles: Unique Capping Ligands and Precursors for Nanostructured Materials. Small, 2015, 11, 5728-5739.	5 . 2	31
187	Subwavelength emitters in the near-infrared based on mercury telluride nanocrystals. Applied Physics Letters, 2004, 84, 4732-4734.	1.5	30
188	Electrochemical Observation of the Photoinduced Formation of Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 19233-19237.	1.2	30
189	Synthesis of Amphiphilic CdTe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4748-4750.	1.5	30
190	Synthesis of Monodisperse Cadmium Phosphide Nanoparticles Using ex-Situ Produced Phosphine. ACS Nano, 2012, 6, 7059-7065.	7.3	30
191	Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Transactions, 2013, 42, 12733.	1.6	29
192	Colloidal Mercury-Doped CdSe Nanoplatelets with Dual Fluorescence. Chemistry of Materials, 2019, 31, 5065-5074.	3.2	29
193	Control of efficiency of photon energy up-conversion in CdSe/ZnS quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 859-863.	0.2	28
194	Quantum Dot Thin Layers Templated on ZnO Inverse Opals. Advanced Materials, 2006, 18, 2768-2772.	11.1	28
195	White organic light-emitting devices incorporating nanoparticles of II–VI semiconductors. Nanotechnology, 2007, 18, 335202.	1.3	28
196	Hemispherical resonators with embedded nanocrystal quantum rod emitters. Applied Physics Letters, 2010, 97, .	1.5	28
197	Colloidal Nanocrystals Embedded in Macrocrystals: Methods and Applications. Journal of Physical Chemistry Letters, 2016, 7, 4117-4123.	2.1	28
198	Cold Flow as Versatile Approach for Stable and Highly Luminescent Quantum Dot–Salt Composites. ACS Applied Materials & Dotates amp; Interfaces, 2016, 8, 21570-21575.	4.0	28

#	Article	IF	CITATIONS
199	Ligand Versatility in Supercrystal Formation. Advanced Functional Materials, 2017, 27, 1700361.	7.8	28
200	A versatile ethanolic approach to metal aerogels (Pt, Pd, Au, Ag, Cu and Co). Materials Chemistry Frontiers, 2019, 3, 1586-1592.	3.2	28
201	Up-conversion luminescence via a below-gap state in CdSe/ZnS quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 99-100.	1.3	27
202	Arylaminoâ€functionalized fluorene―and carbazoleâ€based copolymers: Colorâ€tuning their CdTe nanocrystal composites from red to white. Journal of Polymer Science Part A, 2011, 49, 392-402.	2.5	27
203	Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2014, 2, 5131.	5.2	27
204	Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. Journal of Applied Physics, 2003, 94, 1205-1210.	1,1	26
205	Aerogels from Semiconductor Nanomaterials. Angewandte Chemie - International Edition, 2005, 44, 4839-4841.	7.2	26
206	Electrochemical probing of thiol-capped nanocrystals. Mikrochimica Acta, 2008, 160, 327-334.	2.5	26
207	Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17123-17141.	1.5	26
208	A Sizeâ€Dependent Analysis of the Structural, Surface, Colloidal, and Thermal Properties of Ti _{1â€"<i>x</i>} B ₂ (<i>x</i> = 0.03â€"0.08) Nanoparticles. European Journal of Inorganic Chemistry, 2016, 2016, 3460-3468.	1.0	26
209	Ligand-Exchange-Mediated Fabrication of Gold Aerogels Containing Different Au(I) Content with Peroxidase-like Behavior. Chemistry of Materials, 2019, 31, 10094-10099.	3.2	26
210	Alloying Behavior of Selfâ€Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, 13446-13450.	1.7	25
211	pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D ₂ O. Physical Chemistry Chemical Physics, 2016, 18, 19083-19092.	1.3	25
212	General Colloidal Synthesis of Transition-Metal Disulfide Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Electrocatalysts for Hydrogen Evolution Reaction.	4.0	25
213	Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon. Applied Physics Letters, 2005, 87, 142107.	1.5	24
214	Controlling Charge Carrier Overlap in Type-II ZnSe/ZnS/CdS Core–Barrier–Shell Quantum Dots. Journal of Physical Chemistry Letters, 2015, 6, 2590-2597.	2.1	24
215	Effect of Acid Washing on the Oxygen Reduction Reaction Activity of Pt-Cu Aerogel Catalysts. Electrochimica Acta, 2017, 233, 210-217.	2.6	24
216	Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots. Angewandte Chemie - International Edition, 2017, 56, 14737-14742.	7.2	24

#	Article	IF	Citations
217	Diffusion-Limited Cluster Aggregation: Impact of Rotational Diffusion. Journal of Physical Chemistry C, 2019, 123, 950-954.	1.5	24
218	Proving a Paradigm in Methanol Steam Reforming: Catalytically Highly Selective In _{<i>x</i>} Pd _{<i>y</i>} /In ₂ O ₃ Interfaces. ACS Catalysis, 2021, 11, 304-312.	5.5	24
219	Sizeâ€Tunable Gold Aerogels: A Durable and Misfocusâ€Tolerant 3D Substrate for Multiplex SERS Detection. Advanced Optical Materials, 2021, 9, 2100352.	3.6	24
220	Investigations of the emission properties of single CdSâ€nanocrystallites. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1626-1630.	0.9	23
221	Self-organization of uniform silica globules into the three-dimensional superlattice of artificial opals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 64, 64-67.	1.7	23
222	Durability of Unsupported Pt-Ni Aerogels in PEFC Cathodes. Journal of the Electrochemical Society, 2017, 164, F1136-F1141.	1.3	23
223	Emissive ZnO@Zn ₃ P ₂ Nanocrystals: Synthesis, Optical, and Optoelectrochemical Properties. Small, 2013, 9, 3415-3422.	5.2	22
224	Optofluidic Sensor: Evaporation Kinetics Detection of Solvents Dissolved with Cd ₃ P ₂ Colloidal Quantum Dots in a Rolledâ€Up Microtube. Advanced Optical Materials, 2015, 3, 187-193.	3.6	22
225	Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation process. Physical Chemistry Chemical Physics, 2016, 18, 20640-20650.	1.3	22
226	Light emission in a directional photonic bandgap. Physica Status Solidi A, 2003, 197, 662-672.	1.7	21
227	Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition. Applied Physics Letters, 2010, 96, .	1.5	21
228	Precise Engineering of Nanocrystal Shells via Colloidal Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 8111-8118.	3.2	21
229	Colloidal PbS nanoplatelets synthesized <i>via</i> cation exchange for electronic applications. Nanoscale, 2019, 11, 19370-19379.	2.8	21
230	The utilization of tunnel effects for mechanistic studies of hydrogen transfer reactions. Journal of Photochemistry and Photobiology, 1985, 28, 187-195.	0.6	20
231	ZnPd/ZnO Aerogels as Potential Catalytic Materials. Advanced Functional Materials, 2016, 26, 1014-1020.	7.8	20
232	Structural Analysis and Electrochemical Properties of Bimetallic Palladium–Platinum Aerogels Prepared by a Twoâ€Step Gelation Process. ChemCatChem, 2017, 9, 798-808.	1.8	20
233	Magneto-Optical Studies of HgTe/HgxCd1â^'xTe(S) Core-Shell Nanocrystals. ChemPhysChem, 2003, 4, 1203-1210.	1.0	19
234	Highly conductive silver nanowire networks by organic matrix assisted low-temperature fusing. Organic Electronics, 2014, 15, 3818-3824.	1.4	19

#	Article	IF	CITATIONS
235	Synthesis of Ordered Mesoporous Carbon Materials by Dry Etching. Chemistry - A European Journal, 2015, 21, 14753-14757.	1.7	19
236	Unsupported Pt ₃ Ni Aerogels as Corrosion Resistant PEFC Anode Catalysts under Gross Fuel Starvation Conditions. Journal of the Electrochemical Society, 2018, 165, F3001-F3006.	1.3	19
237	Highly Conductive Copper Selenide Nanocrystal Thin Films for Advanced Electronics. ACS Applied Electronic Materials, 2019, 1, 1560-1569.	2.0	19
238	Easy and Fast Phase Transfer of CTAB Stabilised Gold Nanoparticles from Water to Organic Phase. Zeitschrift Fur Physikalische Chemie, 2015, 229, 235-245.	1.4	18
239	Electrochemical Surface Area Quantification, CO ₂ Reduction Performance, and Stability Studies of Unsupported Three-Dimensional Au Aerogels versus Carbon-Supported Au Nanoparticles. ACS Materials Au, 2022, 2, 278-292.	2.6	18
240	Photochemistry and Photoelectrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticles in Solution and Thin-Film Electrodes. Advances in Photochemistry, 2007, , 165-216.	0.4	17
241	Photosensitizer Methylene Blue-Semiconductor Nanocrystals Hybrid System for Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2010, 10, 2656-2662.	0.9	17
242	Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 2014, 22, 18290.	1.7	17
243	Transfer of Inorganic-Capped Nanocrystals into Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 5573-5578.	2.1	17
244	An EXAFS study on thiolcapped CdTe nanocrystals. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1561-1564.	0.9	16
245	Highly directional emission from colloidally synthesized nanocrystals in vertical cavities with small mode spacing. Applied Physics Letters, 2004, 84, 2223-2225.	1.5	16
246	Multishell Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1539-1552.	1.4	16
247	Alternative Incorporation Procedure of Quantum Dots in Polymer Microspheres. Chemistry of Materials, 2010, 22, 4912-4918.	3.2	16
248	One-Phase Synthesis of Gold Nanoparticles with Varied Solubility. Langmuir, 2011, 27, 10224-10227.	1.6	16
249	CeO ₂ /Pt Catalyst Nanoparticle Containing Carbide-Derived Carbon Composites by a New In situ Functionalization Strategy. Chemistry of Materials, 2011, 23, 57-66.	3.2	16
250	Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1a^xHgxTe nanocrystals. Journal of Materials Chemistry C, 2014, 2, 5011-5018.	2.7	16
251	Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432.	10.2	16
252	Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation. Zeitschrift Fur Physikalische Chemie, 2018, 232, 747-757.	1.4	16

#	Article	IF	Citations
253	Selective pore opening and gating of the pillared layer metal-organic framework DUT-8(Ni) upon liquid phase multi-component adsorption. Microporous and Mesoporous Materials, 2018, 271, 169-174.	2.2	16
254	Tailoring the Morphology and Fractal Dimension of 2D Meshâ€like Gold Gels. Angewandte Chemie - International Edition, 2020, 59, 12048-12054.	7.2	16
255	Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance. Small Science, 2021, 1, 2000021.	5.8	16
256	CO ₂ Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity. ACS Applied Energy Materials, 2022, 5, 8460-8471.	2.5	16
257	A versatile approach for coating oxidic surfaces with a range of nanoparticulate materials. Journal of Materials Chemistry C, 2013, 1, 1515.	2.7	15
258	Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Research, 2015, 8, 860-869.	5.8	15
259	The Formation and Morphology of Nanoparticle Supracrystals. Advanced Functional Materials, 2016, 26, 4890-4895.	7.8	15
260	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie, 2017, 129, 10847-10850.	1.6	15
261	Tomographic Analysis and Modeling of Polymer Electrolyte Fuel Cell Unsupported Catalyst Layers. Journal of the Electrochemical Society, 2018, 165, F7-F16.	1.3	15
262	Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. Journal of Chemical Physics, 2019, 151, 144701.	1.2	15
263	Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds. Small, 2020, 16, e2003662.	5.2	15
264	Radiation-induced damage in x-ray spectroscopy of CdS nanoclusters. Journal of Chemical Physics, 2002, 117, 8953-8958.	1.2	14
265	Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas. Optics Express, 2010, 18, 10720.	1.7	14
266	Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries. Materials, 2017, 10, 678.	1.3	14
267	High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 4025-4031.	2.1	14
268	DNAâ€Mediated Selfâ€Assembly and Metallization of Semiconductor Nanorods for the Fabrication of Nanoelectronic Interfaces. Chemistry - A European Journal, 2019, 25, 9012-9016.	1.7	14
269	Inâ€Situ Generation of Electrolyte inside Pyridineâ€Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. ChemSusChem, 2020, 13, 3192-3198.	3.6	14
270	Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligandâ€Directed Modulation. Angewandte Chemie, 2020, 132, 5755-5760.	1.6	14

#	Article	IF	CITATIONS
271	The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver. Beilstein Journal of Nanotechnology, 2014, 5, 1432-1440.	1.5	13
272	Synthesis and Characterization of Chitosanâ€Based Polyelectrolyte Complexes Doped with Xanthene Dyes. ChemPhysChem, 2015, 16, 3997-4003.	1.0	13
273	Influence of the average molar mass of poly(N-vinylpyrrolidone) on the dimensions and conductivity of silver nanowires. Physical Chemistry Chemical Physics, 2019, 21, 9036-9043.	1.3	13
274	Hybrid Plasmonic–Aerogel Materials as Optical Superheaters with Engineered Resonances. Angewandte Chemie - International Edition, 2020, 59, 1696-1702.	7.2	13
275	Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis. Angewandte Chemie, 2020, 132, 8370-8377.	1.6	13
276	Simultaneous Ligand and Cation Exchange of Colloidal CdSe Nanoplatelets toward PbSe Nanoplatelets for Application in Photodetectors. Journal of Physical Chemistry Letters, 2021, 12, 5214-5220.	2.1	13
277	Innershell absorption spectroscopy on CdS: Free clusters and nanocrystals. Journal of Chemical Physics, 2001, 114, 489.	1.2	12
278	Exploring integration prospects of opal-based photonic crystals. Synthetic Metals, 2003, 139, 701-704.	2.1	12
279	3D assembly of silica encapsulated semiconductor nanocrystals. Nanoscale, 2015, 7, 12713-12721.	2.8	12
280	In-Depth Study of Li ₄ Ti ₅ O ₁₂ Performing beyond Conventional Operating Conditions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37227-37238.	4.0	12
281	Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO ₂ Reduction. Chemistry of Materials, 2022, 34, 2687-2695.	3.2	12
282	Thiolâ€stabilized CdSe and CdTe nanocrystals in the size quantization regime: Synthesis, optical and structural properties. Macromolecular Symposia, 1998, 136, 87-89.	0.4	11
283	Moderne Anorganische Aerogele. Angewandte Chemie, 2017, 129, 13380-13403.	1.6	11
284	Tetrazole-Stabilized Gold Nanoparticles for Catalytic Applications. Zeitschrift Fur Physikalische Chemie, 2017, 231, 51-62.	1.4	11
285	Synthesis of NIRâ€Emitting InAsâ€Based Core/Shell Quantum Dots with the Use of Tripyrazolylarsane as Arsenic Precursor. Particle and Particle Systems Characterization, 2018, 35, 1800175.	1.2	11
286	Near-Infrared-Emitting Cd <i>_×</i> Hg _{1â€"<i>×</i>} Se-Based Core/Shell Nanoplatelets. Chemistry of Materials, 2021, 33, 7693-7702.	3.2	11
287	Morphogenesis of Magnetite Mesocrystals: Interplay between Nanoparticle Morphology and Solvation Shell. Chemistry of Materials, 2021, 33, 9119-9130.	3.2	11
288	Size dependence of structural and dynamic properties of CdSâ€nanoparticles. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1613-1616.	0.9	10

#	Article	IF	CITATIONS
289	Synthesis and characterization of amino-functional, blue light-emitting copolymers and their composites with CdTe nanocrystals. Polymer, 2010, 51, 5669-5673.	1.8	10
290	Microparticles of phosphonate-functionalized copolymers and their composites with CdTe nanocrystals prepared by sonication-precipitation. Polymer Chemistry, 2011, 2, 2597.	1.9	10
291	Localization and Dynamics of Longâ€Lived Excitations in Colloidal Semiconductor Nanocrystals with Dual Quantum Confinement. ChemPhysChem, 2015, 16, 1663-1669.	1.0	10
292	Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots. Small, 2016, 12, 4763-4771.	5.2	10
293	Degradation of Flexible, ITO-Free Oligothiophene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14709-14716.	4.0	10
294	Modification of emission of CdTe nanocrystals by the local field of Langmuir–Blodgett colloidal photonic crystals. Journal of Applied Physics, 2008, 104, 103118.	1.1	9
295	Synthesis and Agglomeration of Silver Nanoparticles Stabilized with 5-R-Tetrazoles. Zeitschrift Fur Physikalische Chemie, 2011, 225, 363-371.	1.4	9
296	QD-Salt Mixed Crystals: the Influence of Salt-Type, Free-Stabilizer, and pH. Zeitschrift Fur Physikalische Chemie, 2015, 229, 109-118.	1.4	9
297	3Dâ€Anordnung anorganischer kolloidaler Nanokristalle zu Gelen und Aerogelen. Angewandte Chemie, 2016, 128, 6442-6446.	1.6	9
298	Zinc Coordination Polymers Containing Isomeric Forms of <i>p</i> å€(Thiazolyl)benzoic Acid: Blueâ€Emitting Materials with a Solvatochromic Response to Water. European Journal of Inorganic Chemistry, 2017, 2017, 4909-4918.	1.0	9
299	In vivo uptake of gold nanoparticles by the diatom Stephanopyxis turris. Algal Research, 2019, 39, 101447.	2.4	9
300	Hybrid Plasmonic–Aerogel Materials as Optical Superheaters with Engineered Resonances. Angewandte Chemie, 2020, 132, 1713-1719.	1.6	9
301	Experimental studies of hydrogen tunnelling. Utilization of large isotope effects in a mechanistic study of a hydrogen shift reaction. Chemical Physics Letters, 1985, 118, 568-572.	1.2	8
302	Spectroscopic investigations on II–VI-semiconductor nanocrystals and their assemblies. Journal of Cluster Science, 2007, 18, 5-18.	1.7	8
303	Multishell semiconductor nanocrystals. , 2008, , 101-117.		8
304	Amphiphilic and magnetic behavior of Fe3O4 nanocrystals. Physical Chemistry Chemical Physics, 2010, 12, 2063.	1.3	8
305	Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer. Nanoscale, 2013, 5, 7034.	2.8	8
306	5â€(2â€Mercaptoethyl)â€1 <i>H</i> à€ŧetrazole: Facile Synthesis and Application for the Preparation of Water Soluble Nanocrystals and Their Gels. Chemistry - A European Journal, 2016, 22, 14746-14752.	1.7	8

#	Article	IF	Citations
307	Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices. Zeitschrift Fur Physikalische Chemie, 2018, 233, 23-40.	1.4	8
308	Semiconductor Nanocrystal Heterostructures: Near-Infrared Emitting PbSe-Tipped CdSe Tetrapods. Chemistry of Materials, 2020, 32, 4045-4053.	3.2	8
309	A direct measurement of g-factors in II–VI and III–V core–shell nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 9-13.	1.3	7
310	Enhanced Nucleation of Vortices in Soft Magnetic Materials Prepared by Silica Nanosphere Lithography. Advanced Functional Materials, 2011, 21, 891-896.	7.8	7
311	Application Prospects of Sprayâ€Assisted Layerâ€byâ€Layer Assembly of Colloidal Nanoparticles. ChemPhysChem, 2012, 13, 2128-2132.	1.0	7
312	Surface Influences on the Electrodiffusive Behavior in Mesoporous Templates. Small, 2015, 11, 3174-3182.	5.2	7
313	Probing Absolute Electronic Energy Levels in Hgâ€Doped CdTe Semiconductor Nanocrystals by Electrochemistry and Density Functional Theory. ChemPhysChem, 2016, 17, 244-252.	1.0	7
314	Kernâ€Schaleâ€Strukturierung rein metallischer Aerogele fÃ⅓r eine hocheffiziente Nutzung von Platin fÃ⅓r die Sauerstoffreduktion. Angewandte Chemie, 2018, 130, 3014-3018.	1.6	7
315	Unprecedented Catalytic Activity and Selectivity in Methanol Steam Reforming by Reactive Transformation of Intermetallic In–Pt Compounds. Journal of Physical Chemistry C, 2021, 125, 9809-9817.	1.5	7
316	Transport of a charge carrier packet in nanoparticulate ZnO electrodes. Physical Chemistry Chemical Physics, 2003, 5, 384-394.	1.3	6
317	Automated setup for spray assisted layer-by-layer deposition. Review of Scientific Instruments, 2013, 84, 074101.	0.6	6
318	Metal Nanoparticle Aerogels and Their Applications. ECS Transactions, 2013, 45, 149-154.	0.3	6
319	Encapsulated Cd ₃ P ₂ quantum dots emitting from the visible to the near infrared for bio-labelling applications. CrystEngComm, 2014, 16, 9622-9630.	1.3	6
320	Band-Emission Evolutions from Magic-sized Clusters to Nanosized Quantum Dots of Cd ₃ As ₂ in the Hot-Bubbling Synthesis. Journal of Physical Chemistry C, 2015, 119, 16390-16395.	1.5	6
321	Galvanic replacement induced electromotive force to propel Janus micromotors. Journal of Chemical Physics, 2019, 150, 144902.	1.2	6
322	Cation Exchange on Colloidal Copper Selenide Nanosheets: A Route to Two-Dimensional Metal Selenide Nanomaterials. Journal of Materials Chemistry C, 0, , .	2.7	6
323	Controllable electrostatic manipulation of structure building blocks in noble metal aerogels. Materials Advances, 2022, 3, 5760-5771.	2.6	6
324	Multiexciton generation assisted highly photosensitive CdHgTe nanocrystal skins. Nano Energy, 2016, 26, 324-331.	8.2	5

#	Article	IF	Citations
325	Flexible and fragmentable tandem photosensitive nanocrystal skins. Nanoscale, 2016, 8, 4495-4503.	2.8	5
326	A fast route to obtain modified tin oxide aerogels using hydroxostannate precursors. Materials Chemistry Frontiers, 2018, 2, 710-717.	3.2	5
327	Mechanical Characterization of Self-Supported Noble Metal Gel Monoliths. Journal of Physical Chemistry C, 2019, 123, 27651-27658.	1.5	5
328	Quantum Dots and Quantum Rods. Nanoscience and Technology, 2019, , 29-51.	1.5	5
329	Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000282.	1.2	5
330	Continuous droplet reactor for the production of millimeter sized spherical aerogels. RSC Advances, 2020, 10, 2277-2282.	1.7	5
331	Surface Defines the Properties: Colloidal Bi2Se3 Nanosheets with High Electrical Conductivity. Journal of Physical Chemistry C, 2021, 125, 6442-6448.	1.5	5
332	Polyol-Assisted Synthesis of Copper Particles. Journal of Physical Chemistry C, 2021, 125, 24887-24893.	1.5	5
333	Synthesis and characterisation of NIR-emitting nanocrystals for photonic and optoelectronic applications. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 113-118.	1.0	4
334	Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared. Optics Express, 2012, 20, 11536.	1.7	4
335	Synthesis and Assembling of Semiconductor and Metal Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2007, 221, 307-317.	1.4	3
336	Emission pattern of planar CdTe nanocrystal light source coated by two-dimensional Langmuir-Blodgett photonic crystal. Materials Science and Engineering C, 2007, 27, 968-971.	3.8	3
337	Nanowire filled polymer films for 3D system integration. , 2011, , .		3
338	Preparation of near-infrared absorbing composites comprised of conjugated macroligands on the surface of PbS nanoparticles. Polymer, 2013, 54, 5525-5533.	1.8	3
339	Enzyme-Encapsulated Quantum Dot Hydrogels in the Development of Biosensors: A Multifunctional Platform for Both Bio-Catalysis and Fluorescent Probing. ECS Transactions, 2013, 50, 255-258.	0.3	3
340	Mechanism of Surface Alkylation of a Gold Aerogel with Tetra-n-butylstannane-d36: Identification of Byproducts. Journal of Physical Chemistry Letters, 2017, 8, 2339-2343.	2.1	3
341	Quenching of R6G Fluorescence by Gold Nanoparticles of Various Particle Geometries. Zeitschrift Fur Physikalische Chemie, 2017, 232, 1-11.	1.4	3
342	Tailoring the Morphology and Fractal Dimension of 2D Meshâ€like Gold Gels. Angewandte Chemie, 2020, 132, 12146-12152.	1.6	3

#	Article	IF	CITATIONS
343	Expanding the Range: AuCu Metal Aerogels from H2O and EtOH. Catalysts, 2022, 12, 441.	1.6	3
344	Topâ€koading unit for closedâ€cycle refrigeration systems. Review of Scientific Instruments, 1985, 56, 2333-2335.	0.6	2
345	High aspect ratio metallic nanowire arrays by pulsed electrodeposition. , 2011, , .		2
346	Relationship of the nanocrystal morphology and atomistic structure with respect to the superstructure ordering within PbS- and Gold-Mesocrystals. Materials Research Society Symposia Proceedings, 2014, 1705, 14.	0.1	2
347	Simultane Bestimmung spektraler Eigenschaften und Größen von multiplen Partikeln in Lösung mit Subnanometerâ€Auflösung. Angewandte Chemie, 2016, 128, 11944-11949.	1.6	2
348	Tri(pyrazolyl)phosphane als Vorstufen fýr die Synthese von stark emittierenden InP/ZnSâ€Quantenpunkten. Angewandte Chemie, 2017, 129, 14932-14937.	1.6	2
349	Hollow Nanostructures. ChemNanoMat, 2020, 6, 1419-1420.	1.5	2
350	An Undergraduate Project on the Assembly of Langmuir–Blodgett Films of Colloidal Particles. Journal of Chemical Education, 2022, 99, 952-956.	1.1	2
351	Light Emitting Opal-Based Photonic Crystal Heterojunctions. , 2006, , 132-152.		1
352	Effect of template defects in radiative energy relaxation of CdTe nanocrystals in nanotubes of chrysotile asbestos. Microporous and Mesoporous Materials, 2008, 107, 212-218.	2.2	1
353	Multi-layered CdSe/ZnS/CdSe heteronanocrystals to generate and tune white light. , 2008, , .		1
354	Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments. Beilstein Journal of Nanotechnology, 2014, 5, 2383-2387.	1.5	1
355	A Versatile Approach for a Variety of Amphiphilic Nanoparticles: Semiconductor – Plasmonic – Magnetic. Zeitschrift Fur Physikalische Chemie, 2014, 228, 171-181.	1.4	1
356	Semiconductor Nanocrystals: Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2783-2783.	7.8	1
357	Frontispiece: Alloying Behavior of Self-Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, .	1.7	1
358	Charge carrier transport in nanoporous ZnO electrodes. , 2002, , .		0
359	Ordered bimetallic nanostructures with hierarchical porosity and their applications., 2006, 6182, 336.		O
360	White CdS Nanoluminophore based Tunable Hybrid Light Emitting Diodes. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0

#	Article	IF	CITATIONS
361	Self-assembled macroscopic structures of gold nanoparticles. Proceedings of SPIE, 2007, , .	0.8	O
362	NIR-emitting nanocrystals for photonic applications. , 2007, , .		0
363	Architectural tuning of color chromaticity by controlled nonradiative resonance energy transfer in CdTe nanocrystal solids. , 2009, , .		O
364	Manufacturing of a Nanocrystal-based LED by Layer-by-Layer Deposition. ECS Transactions, 2009, 25, 37-40.	0.3	0
365	Formâ€anisotropy of 2D nanostructures: Modeling approaches comparison. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2834-2838.	0.8	O
366	The use of nanocrystals with emission in the visible or near infrared and their applications for photonics and optoelectronics. Proceedings of SPIE, 2009, , .	0.8	0
367	Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles. , 2010, , .		O
368	Emissive Semiconductor Nanocrystals: Recent Progress. ECS Transactions, 2012, 45, 61-66.	0.3	0
369	Large-area (> 50 cm $\tilde{A}-$ 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots. , 2012, , .		O
370	Two basic approaches towards adhesive nanowire-filled films for anisotropic nanowiring. , 2012, , .		0
371	A novel concept to generate single photons: incoherent conversion from the visible into the infrared spectrum. Proceedings of SPIE, 2013, , .	0.8	O
372	Effect of Electrochemical Charge Injection on the Photoluminescence Properties of CdSe Quantum Dot Monolayers Anchored to Oxide Substrates. Zeitschrift Fur Physikalische Chemie, 2013, , 130311033635007.	1.4	0
373	Synthesis-property relationships of electrochemically grown metal nanowires. , 2013, , .		O
374	Aqueous Synthesis of Colloidal CdTe Nanocrystals. , 2013, , 23-59.		O
375	Thomas Wolff. Zeitschrift Fur Physikalische Chemie, 2014, 228, 127-128.	1.4	O
376	RÃ⅓cktitelbild: Freeze–Thawâ€Promoted Fabrication of Clean and Hierarchically Structured Nobleâ€Metal Aerogels for Electrocatalysis and Photoelectrocatalysis (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8379-8379.	1.6	0
377	Spectroscopy on Semiconductor Nanoparticle Assemblies. , 2005, , 179-192.		O
378	10.1063/1.5085838.1., 2019, , .		0