
Benoit Lacombe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358214/publications.pdf Version: 2024-02-01

RENOIT LACOMBE

#	Article	IF	CITATIONS
1	Increasing our knowledge on grapevines physiology to increase yield, quality and sustainably. Physiologia Plantarum, 2022, 174, e13664.	5.2	1
2	Sugar and Nitrate Sensing: A Multi-Billion-Year Story. Trends in Plant Science, 2021, 26, 352-374.	8.8	55
3	GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. Journal of Experimental Botany, 2021, 72, 3881-3901.	4.8	27
4	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
5	Functional Characterization of the Arabidopsis Abscisic Acid Transporters NPF4.5 and NPF4.6 in Xenopus Oocytes. Frontiers in Plant Science, 2020, 11, 144.	3.6	20
6	Disruption of the Lotus japonicus transporter LjNPF2.9 increases shoot biomass and nitrate content without affecting symbiotic performances. BMC Plant Biology, 2019, 19, 380.	3.6	14
7	Getting to the Root of Plant Mineral Nutrition: Combinatorial Nutrient Stresses Reveal Emergent Properties. Trends in Plant Science, 2019, 24, 542-552.	8.8	88
8	Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in Plants. Plant Cell, 2019, 31, 1171-1184.	6.6	135
9	Transporters and Mechanisms of Hormone Transport in Arabidopsis. Advances in Botanical Research, 2018, 87, 115-138.	1.1	12
10	Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve <i>trans</i> -Zeatin in Shoots. Plant Cell, 2018, 30, 1243-1257.	6.6	134
11	Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds. Agriculture (Switzerland), 2018, 8, 27.	3.1	9
12	Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. International Journal of Molecular Sciences, 2018, 19, 899.	4.1	21
13	Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. Journal of Experimental Botany, 2017, 68, 3107-3113.	4.8	170
14	The <i>Arabidopsis</i> guard cell outward potassium channel <scp>GORK</scp> is regulated by <scp>CPK</scp> 33. FEBS Letters, 2017, 591, 1982-1992.	2.8	40
15	Nitrate supply to grapevine rootstocks – new genome-wide findings. Journal of Experimental Botany, 2017, 68, 3999-4001.	4.8	2
16	Plant Hormones: Key Players in Gut Microbiota and Human Diseases?. Trends in Plant Science, 2017, 22, 754-758.	8.8	32
17	TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation. Plant Physiology, 2017, 175, 916-926.	4.8	28
18	The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology, 2017, 175, 1269-1282.	4.8	49

Benoit Lacombe

#	Article	IF	CITATIONS
19	The world according to GARP transcription factors. Current Opinion in Plant Biology, 2017, 39, 159-167.	7.1	72
20	Transporters Involved in Root Nitrate Uptake and Sensing by Arabidopsis. Frontiers in Plant Science, 2016, 7, 1391.	3.6	71
21	Longâ€distance nitrate signaling displays cytokinin dependent and independent branches. Journal of Integrative Plant Biology, 2016, 58, 226-229.	8.5	57
22	Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the <i>Arabidopsis thaliana</i> root. Science Signaling, 2016, 9, rs13.	3.6	81
23	Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 2016, 34, 1-8.	7.1	102
24	AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Scientific Reports, 2015, 5, 7962.	3.3	67
25	A new insight into root responses to external cues: Paradigm shift in nutrient sensing. Plant Signaling and Behavior, 2015, 10, e1049791.	2.4	7
26	Nitrate sensing and uptake in <i>Arabidopsis</i> are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Science Signaling, 2015, 8, ra43.	3.6	169
27	GeneCloud Reveals Semantic Enrichment in Lists of Gene Descriptions. Molecular Plant, 2015, 8, 971-973.	8.3	17
28	A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19, 5-9.	8.8	581
29	Arabidopsis NRT1.1 Is a Bidirectional Transporter Involved in Root-to-Shoot Nitrate Translocation. Molecular Plant, 2013, 6, 1984-1987.	8.3	103
30	ABA transport and transporters. Trends in Plant Science, 2013, 18, 325-333.	8.8	281
31	Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Current Biology, 2013, 23, 697-702.	3.9	214
32	ArabidopsisÂWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4, 2625.	12.8	249
33	Natural Variation at the FRD3 MATE Transporter Locus Reveals Cross-Talk between Fe Homeostasis and Zn Tolerance in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1003120.	3.5	89
34	A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 2011, 16, 178-182.	8.8	255
35	Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21, 1116-1130.	12.0	261
36	Preferential KAT1-KAT2 Heteromerization Determines Inward K+ Current Properties in Arabidopsis Guard Cells. Journal of Biological Chemistry, 2010, 285, 6265-6274.	3.4	55

Benoit Lacombe

#	Article	IF	CITATIONS
37	Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Developmental Cell, 2010, 18, 927-937.	7.0	870
38	Heteromerization of Arabidopsis Kv channel Î \pm -subunits. Plant Signaling and Behavior, 2008, 3, 622-625.	2.4	28
39	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	6.6	314
40	Molecular and Functional Characterization of a Na+-K+ Transporter from the Trk Family in the Ectomycorrhizal Fungus Hebeloma cylindrosporum. Journal of Biological Chemistry, 2007, 282, 26057-26066.	3.4	51
41	Increased Functional Diversity of Plant K+ Channels by Preferential Heteromerization of the Shaker-like Subunits AKT2 and KAT2. Journal of Biological Chemistry, 2007, 282, 486-494.	3.4	65
42	External K+modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant Journal, 2006, 46, 269-281.	5.7	138
43	Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Molecular Microbiology, 2005, 58, 1406-1420.	2.5	48
44	Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant Journal, 2005, 44, 783-797.	5.7	81
45	AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta, 2005, 222, 418-427.	3.2	156
46	A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation. Journal of General Physiology, 2005, 126, 605-617.	1.9	54
47	GABA signaling: a conserved and ubiquitous mechanism. Trends in Cell Biology, 2003, 13, 607-610.	7.9	197
48	The K+ Channel KZM1 Mediates Potassium Uptake into the Phloem and Guard Cells of the C4 Grass Zea mays. Journal of Biological Chemistry, 2003, 278, 16973-16981.	3.4	92
49	A Grapevine Gene Encoding a Guard Cell K+ Channel Displays Developmental Regulation in the Grapevine Berry. Plant Physiology, 2002, 128, 564-577.	4.8	53
50	Outer Pore Residues Control the H+ and K+ Sensitivity of the Arabidopsis Potassium Channel AKT3. Plant Cell, 2002, 14, 1859-1868.	6.6	41
51	The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.	12.6	175
52	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	6.6	196
53	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	6.6	120
54	pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Letters, 2000, 466, 351-354.	2.8	76

#	Article	IF	CITATIONS
55	Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell, 1998, 94, 647-655.	28.9	676