Benoit Lacombe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358214/publications.pdf

Version: 2024-02-01

76326 155660 7,026 55 40 55 citations h-index g-index papers 58 58 58 7079 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Developmental Cell, 2010, 18, 927-937.	7.0	870
2	Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell, 1998, 94, 647-655.	28.9	676
3	A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19, 5-9.	8.8	581
4	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	6.6	314
5	ABA transport and transporters. Trends in Plant Science, 2013, 18, 325-333.	8.8	281
6	Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21, 1116-1130.	12.0	261
7	A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 2011, 16, 178-182.	8.8	255
8	ArabidopsisÂWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4, 2625.	12.8	249
9	Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Current Biology, 2013, 23, 697-702.	3.9	214
10	GABA signaling: a conserved and ubiquitous mechanism. Trends in Cell Biology, 2003, 13, 607-610.	7.9	197
11	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	6.6	196
12	The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.	12.6	175
13	Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. Journal of Experimental Botany, 2017, 68, 3107-3113.	4.8	170
14	Nitrate sensing and uptake in <i>Arabidopsis</i> are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Science Signaling, 2015, 8, ra43.	3.6	169
15	AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta, 2005, 222, 418-427.	3.2	156
16	External K+modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant Journal, 2006, 46, 269-281.	5.7	138
17	Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in Plants. Plant Cell, 2019, 31, 1171-1184.	6.6	135
18	Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve <i>trans</i> Plant Cell, 2018, 30, 1243-1257.	6.6	134

#	Article	IF	CITATIONS
19	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	6.6	120
20	Arabidopsis NRT1.1 Is a Bidirectional Transporter Involved in Root-to-Shoot Nitrate Translocation. Molecular Plant, 2013, 6, 1984-1987.	8.3	103
21	Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 2016, 34, 1-8.	7.1	102
22	The K+ Channel KZM1 Mediates Potassium Uptake into the Phloem and Guard Cells of the C4 Grass Zea mays. Journal of Biological Chemistry, 2003, 278, 16973-16981.	3.4	92
23	Natural Variation at the FRD3 MATE Transporter Locus Reveals Cross-Talk between Fe Homeostasis and Zn Tolerance in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1003120.	3. 5	89
24	Getting to the Root of Plant Mineral Nutrition: Combinatorial Nutrient Stresses Reveal Emergent Properties. Trends in Plant Science, 2019, 24, 542-552.	8.8	88
25	Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant Journal, 2005, 44, 783-797.	5.7	81
26	Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the <i>Arabidopsis thaliana</i> root. Science Signaling, 2016, 9, rs13.	3.6	81
27	pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Letters, 2000, 466, 351-354.	2.8	76
28	The world according to GARP transcription factors. Current Opinion in Plant Biology, 2017, 39, 159-167.	7.1	72
29	Transporters Involved in Root Nitrate Uptake and Sensing by Arabidopsis. Frontiers in Plant Science, 2016, 7, 1391.	3.6	71
30	AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Scientific Reports, 2015, 5, 7962.	3.3	67
31	Increased Functional Diversity of Plant K+ Channels by Preferential Heteromerization of the Shaker-like Subunits AKT2 and KAT2. Journal of Biological Chemistry, 2007, 282, 486-494.	3.4	65
32	Longâ€distance nitrate signaling displays cytokinin dependent and independent branches. Journal of Integrative Plant Biology, 2016, 58, 226-229.	8.5	57
33	Preferential KAT1-KAT2 Heteromerization Determines Inward K+ Current Properties in Arabidopsis Guard Cells. Journal of Biological Chemistry, 2010, 285, 6265-6274.	3.4	55
34	Sugar and Nitrate Sensing: A Multi-Billion-Year Story. Trends in Plant Science, 2021, 26, 352-374.	8.8	55
35	A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation. Journal of General Physiology, 2005, 126, 605-617.	1.9	54
36	A Grapevine Gene Encoding a Guard Cell K+ Channel Displays Developmental Regulation in the Grapevine Berry. Plant Physiology, 2002, 128, 564-577.	4.8	53

#	Article	IF	CITATIONS
37	Molecular and Functional Characterization of a Na+-K+ Transporter from the Trk Family in the Ectomycorrhizal Fungus Hebeloma cylindrosporum. Journal of Biological Chemistry, 2007, 282, 26057-26066.	3.4	51
38	The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology, 2017, 175, 1269-1282.	4.8	49
39	Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Molecular Microbiology, 2005, 58, 1406-1420.	2.5	48
40	Outer Pore Residues Control the H+ and K+ Sensitivity of the Arabidopsis Potassium Channel AKT3. Plant Cell, 2002, 14, 1859-1868.	6.6	41
41	The <i>Arabidopsis</i> guard cell outward potassium channel <scp>GORK</scp> is regulated by <scp>CPK</scp> 33. FEBS Letters, 2017, 591, 1982-1992.	2.8	40
42	Plant Hormones: Key Players in Gut Microbiota and Human Diseases?. Trends in Plant Science, 2017, 22, 754-758.	8.8	32
43	Heteromerization of Arabidopsis Kv channel α-subunits. Plant Signaling and Behavior, 2008, 3, 622-625.	2.4	28
44	TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation. Plant Physiology, 2017, 175, 916-926.	4.8	28
45	GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. Journal of Experimental Botany, 2021, 72, 3881-3901.	4.8	27
46	Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. International Journal of Molecular Sciences, 2018, 19, 899.	4.1	21
47	Functional Characterization of the Arabidopsis Abscisic Acid Transporters NPF4.5 and NPF4.6 in Xenopus Oocytes. Frontiers in Plant Science, 2020, 11, 144.	3.6	20
48	GeneCloud Reveals Semantic Enrichment in Lists of Gene Descriptions. Molecular Plant, 2015, 8, 971-973.	8.3	17
49	Disruption of the Lotus japonicus transporter LjNPF2.9 increases shoot biomass and nitrate content without affecting symbiotic performances. BMC Plant Biology, 2019, 19, 380.	3.6	14
50	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
51	Transporters and Mechanisms of Hormone Transport in Arabidopsis. Advances in Botanical Research, 2018, 87, 115-138.	1.1	12
52	Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds. Agriculture (Switzerland), 2018, 8, 27.	3.1	9
53	A new insight into root responses to external cues: Paradigm shift in nutrient sensing. Plant Signaling and Behavior, 2015, 10, e1049791.	2.4	7
54	Nitrate supply to grapevine rootstocks – new genome-wide findings. Journal of Experimental Botany, 2017, 68, 3999-4001.	4.8	2

 #	Article	IF	CITATIONS
55	Increasing our knowledge on grapevines physiology to increase yield, quality and sustainably. Physiologia Plantarum, 2022, 174, e13664.	5.2	1