
Dongfeng Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2357067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seeing the unseen: AIE luminogens for super-resolution imaging. Coordination Chemistry Reviews, 2022, 451, 214279.	18.8	48
2	Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chemical Science, 2022, 13, 1270-1280.	7.4	24
3	Introduction to materials chemistry at Xi'an Jiaotong University. Materials Chemistry Frontiers, 2022, 6, 126-127.	5.9	0
4	Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS Nano, 2022, 16, 5932-5942.	14.6	26
5	An easily synthesized AIE luminogen for lipid droplet-specific super-resolution imaging and two-photon imaging. Materials Chemistry Frontiers, 2021, 5, 1872-1883.	5.9	41
6	Recent advances in luminescent materials for super-resolution imaging <i>via</i> stimulated emission depletion nanoscopy. Chemical Society Reviews, 2021, 50, 667-690.	38.1	105
7	Recent Advances on Organic Fluorescent Probes for Stimulated Emission Depletion (STED) Microscopy. Combinatorial Chemistry and High Throughput Screening, 2021, 24, 1017-1030.	1.1	2
8	Donor-Acceptor Typed AIE Luminogens with Near-infrared Emission for Super-resolution Imaging. Chemical Research in Chinese Universities, 2021, 37, 143-149.	2.6	9
9	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	6.7	9
10	Fluorous effect-induced emission of azido substituted poly(vinylidene fluoride) with high photostability and film formation. Polymer Chemistry, 2020, 11, 1307-1313.	3.9	17
11	Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Applied Materials & Interfaces, 2020, 12, 6814-6826.	8.0	40
12	A Facilely Synthesized Dualâ€State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry - A European Journal, 2020, 26, 2741-2748.	3.3	19
13	Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chemical Science, 2020, 11, 8157-8166.	7.4	70
14	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	10.0	58
15	Continuous phase regulation of MoSe ₂ from 2H to 1T for the optimization of peroxidase-like catalysis. Journal of Materials Chemistry B, 2020, 8, 6451-6458.	5.8	14
16	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.	14.6	45
17	Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1807019.	21.0	120
18	Molecular engineering of benzodithiophene and diketopyrrolopyrrole-contained push-pull small molecules for efficient solution-processed organic solar cells. Dyes and Pigments, 2019, 166, 480-489.	3.7	2

DONGFENG DANG

#	Article	IF	CITATIONS
19	1 + 1 >> 2: Dramatically Enhancing the Emission Efficiency of TPEâ€Based AlEgens but Keeping their Emission Color through Tailored Alkyl Linkages. Advanced Functional Materials, 2018, 28, 1707210.	14.9	73
20	Triphenylamine cored electron-donors for solution-processed organic solar cells: From tri-armed molecules. Dyes and Pigments, 2018, 153, 291-299.	3.7	6
21	Fluorescent Organic Nanoparticles Constructed by a Facile "Self-Isolation Enhanced Emission― Strategy for Cell Imaging. ACS Applied Nano Materials, 2018, 1, 2324-2331.	5.0	23
22	lsomeric organic semiconductors containing fused-thiophene cores: molecular packing and charge transport. Physical Chemistry Chemical Physics, 2018, 20, 13171-13177.	2.8	10
23	Highly Emissive AlEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet Imaging, Apoptosis Monitoring, and In Vivo Imaging. Chemistry of Materials, 2018, 30, 7892-7901.	6.7	68
24	A Strategy of "Selfâ€isolated Enhanced Emission―to Achieve Highly Emissive Dualâ€State Emission for Organic Luminescent Materials. Chemistry - A European Journal, 2018, 24, 10383-10389.	3.3	61
25	Manipulating the Molecular Backbone to Achieve Highly Emissive Skyâ€Blue AlEgens and Their Applications in Nondoped Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2018, 4, 1800354.	5.1	12
26	Strain-released method to enhance the photovoltaic performance in solution-processed organic solar cells. Dyes and Pigments, 2017, 145, 263-269.	3.7	0
27	A1-A-A1 type small molecules terminated with naphthalimide building blocks for efficient non-fullerene organic solar cells. Dyes and Pigments, 2017, 137, 43-49.	3.7	18
28	Synthesis of multi-armed small molecules with planar terminals and their application in organic solar cells. Dyes and Pigments, 2016, 133, 1-8.	3.7	9
29	An efficient method to achieve a balanced open circuit voltage and short circuit current density in polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8291-8297.	10.3	41
30	Tuning the fused aromatic rings to enhance photovoltaic performance in wide band-gap polymer solar cells. Polymer, 2016, 104, 130-137.	3.8	10
31	Spirobifluorene-cored small molecules containing four diketopyrrolopyrrole arms for solution-processed organic solar cells. Journal of Materials Science, 2016, 51, 8018-8026.	3.7	10
32	Synthesis and characterization of D-A-A type regular terpolymers with narrowed band-gap and their application in high performance polymer solar cells. Organic Electronics, 2016, 32, 237-243.	2.6	25
33	Influence of the fused hetero-aromatic centers on molecular conformation and photovoltaic performance of solution-processed organic solar cells. New Journal of Chemistry, 2015, 39, 2224-2232.	2.8	4
34	Tuning the Isomeric Fused Heteroaromatic Core of Small Donor–Acceptor Molecules to Alter Their Crystalline Nature and Enhance Photovoltaic Performance. European Journal of Organic Chemistry, 2015, 2015, 820-827.	2.4	13
35	Improved photovoltaic performance of star-shaped molecules with a triphenylamine core by tuning the substituted position of the carbazolyl unit at the terminal. Journal of Materials Chemistry A, 2015, 3, 10883-10889.	10.3	27
36	Enhancing the photovoltaic performance of triphenylamine based star-shaped molecules by tuning the moiety sequence of their arms in organic solar cells. Journal of Materials Chemistry A, 2015, 3, 13568-13576.	10.3	35

DONGFENG DANG

#	Article	IF	CITATIONS
37	Enhanced photovoltaic properties of di(dodecylthiophene)-alt-2,3-di(3-octoxylphenyl)-5,8-dithieno[3,2-b]thiophene 6,7-difluoroquinoxaline copolymer by fluorination. Dyes and Pigments, 2015, 113, 312-317.	3.7	5
38	Increasing thiophene spacers between thieno[3,2-b]thiophene and benzothiadiazole units in backbone to enhance photovoltaic performance for their 2-D polymers. Dyes and Pigments, 2015, 112, 99-104.	3.7	20
39	Novel wide band-gap polymer utilizing fused hetero-aromatic unit for efficient polymer solar cells and field-effect transistors. Polymer, 2014, 55, 6708-6716.	3.8	30
40	A Facile Method to Enhance Photovoltaic Performance of Benzodithiopheneâ€ I soindigo Polymers by Inserting Bithiophene Spacer. Advanced Energy Materials, 2014, 4, 1301455.	19.5	66
41	Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D–A-type two-dimensional copolymers. Organic Electronics, 2014, 15, 2876-2884.	2.6	40
42	Improved photovoltaic performance of two-dimensional low band-gap conjugated polymers with thieno[3,2-b]thiophene and diketopyrrolopyrrole units by altering pendent position of conjugated side chain. Dyes and Pigments, 2014, 109, 6-12.	3.7	19
43	Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain Modulation. Advanced Energy Materials, 2014, 4, 1400680.	19.5	134
44	An alternating D–A1–D–A2 copolymer containing two electron-deficient moieties for efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 11141.	10.3	66
45	2D π-conjugated benzo[1,2-b:4,5-b′]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. RSC Advances, 2013, 3, 24543.	3.6	34
46	Fluorine substitution enhanced photovoltaic performance of a D–A1–D–A2 copolymer. Chemical Communications, 2013, 49, 9335.	4.1	116
47	Boosting the AIEgen-based photo-theranostic platform by balancing radiative decay and non-radiative decay. Materials Chemistry Frontiers, 0, , .	5.9	11