Marta Pazos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2356681/publications.pdf

Version: 2024-02-01

61984 106344 5,961 160 43 65 citations h-index g-index papers 162 162 162 5179 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Exploring the pressurized heterogeneous electro-Fenton process and modelling the system. Chemical Engineering Journal, 2022, 431, 133280.	12.7	8
2	Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts, 2022, 12, 64.	3.5	17
3	Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. Journal of Environmental Chemical Engineering, 2022, 10, 106977.	6.7	20
4	Methodology for decentralized analysis: detection, quantification and in situ monitoring of pharmaceutical formulations removal by electro-Fenton. Journal of Electroanalytical Chemistry, 2022, , 116139.	3.8	0
5	Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts, 2022, 12, 344.	3.5	35
6	Sustainable regeneration of a honeycomb carbon aerogel used as a high-capacity adsorbent for Fluoxetine removal. Journal of Molecular Liquids, 2022, 357, 119079.	4.9	5
7	Preparation and characterization of high performance hydrochar for efficient adsorption of drugs mixture. Journal of Molecular Liquids, 2022, 353, 118797.	4.9	12
8	Exploring the use of carbon materials as cathodes in electrochemical advanced oxidation processes for the degradation of antibiotics. Journal of Environmental Chemical Engineering, 2022, 10, 107506.	6.7	11
9	Ultraviolet-based heterogeneous advanced oxidation processes as technologies to remove pharmaceuticals from wastewater: An overview. Journal of Environmental Chemical Engineering, 2022, 10, 107630.	6.7	14
10	Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation. International Journal of Environmental Research and Public Health, 2022, 19, 6852.	2.6	5
11	Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresource Technology, 2021, 320, 124399.	9.6	33
12	An approach towards Zero-Waste wastewater technology: Fluoxetine adsorption on biochar and removal by the sulfate radical. Chemosphere, 2021, 268, 129318.	8.2	19
13	Production of modified sunflowers seed shells for the removal of bisphenol A. RSC Advances, 2021, 11, 3516-3533.	3.6	8
14	Fenton Processes for Remediation of Polluted Soils. Environmental Pollution, 2021, , 167-197.	0.4	0
15	Life Cycle and Economic Analyses of the Removal of Pesticides and Pharmaceuticals from Municipal Wastewater by Anodic Oxidation. Sustainability, 2021, 13, 3669.	3.2	7
16	Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. Journal of Electroanalytical Chemistry, 2021, 886, 115135.	3.8	19
17	ZnFe2O4-chitosan magnetic beads for the removal of chlordimeform by photo-Fenton process under UVC irradiation. Journal of Environmental Management, 2021, 283, 111987.	7.8	23
18	Prospects on integrated electrokinetic systems for decontamination of soil polluted with organic contaminants. Current Opinion in Electrochemistry, 2021, 27, 100692.	4.8	10

#	Article	IF	CITATIONS
19	Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475.	3.8	14
20	Eco-approach for pharmaceutical removal: Thermochemical waste valorisation, biochar adsorption and electro-assisted regeneration. Electrochimica Acta, 2021, 389, 138694.	5.2	12
21	Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater. Chemosphere, 2021, 280, 130778.	8.2	19
22	Heterogeneous Electro-Fenton as "Green―Technology for Pharmaceutical Removal: A Review. Catalysts, 2021, 11, 85.	3.5	40
23	Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water. Applied Sciences (Switzerland), 2021, 11, 12103.	2.5	7
24	Coupling electro-Fenton process to a biological treatment, a new methodology for the removal of ionic liquids?. Separation and Purification Technology, 2020, 233, 115990.	7.9	31
25	Bifunctional floating catalyst for enhancing the synergistic effect of LED-photolysis and electro-Fenton process. Separation and Purification Technology, 2020, 230, 115880.	7.9	6
26	Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst. Chemical Engineering Research and Design, 2020, 144, 100-110.	5.6	29
27	Iron-Loaded Catalytic Silicate Adsorbents: Synthesis, Characterization, Electroregeneration and Application for Continuous Removal of 1-Butylpyridinium Chloride. Catalysts, 2020, 10, 950.	3.5	2
28	Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. Applied Sciences (Switzerland), 2020, 10, 7810.	2.5	44
29	Equilibrium Study, Modeling and Optimization of Model Drug Adsorption Process by Sunflower Seed Shells. Applied Sciences (Switzerland), 2020, 10, 3271.	2.5	4
30	Ultrasonic processes for the advanced remediation of contaminated sediments. Ultrasonics Sonochemistry, 2020, 67, 105171.	8.2	7
31	Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. Journal of Cleaner Production, 2020, 271, 122436.	9.3	26
32	Differential pulse voltammetry as a powerful tool to monitor the electro-Fenton process. Electrochimica Acta, 2020, 354, 136740.	5.2	8
33	Pre-concentration by natural adsorbent as plausible tool for effective electro-Fenton removal of micropollutants. Separation and Purification Technology, 2020, 241, 116676.	7.9	4
34	Environmental application of monolithic carbonaceous aerogels for the removal of emerging pollutants. Chemosphere, 2020, 248, 125995.	8.2	14
35	Iron-doped cathodes for electro-Fenton implementation: Application for pymetrozine degradation. Electrochimica Acta, 2020, 338, 135768.	5.2	34
36	Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Separation and Purification Technology, 2020, 242, 116796.	7.9	38

#	Article	IF	CITATIONS
37	Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater Management. Advances in Science, Technology and Innovation, 2020, , 113-115.	0.4	1
38	Performance of Electro-Fenton Water Treatment Technology in Decreasing Zebrafish Embryotoxicity Elicited by a Mixture of Organic Contaminants. Advances in Science, Technology and Innovation, 2020, , 243-246.	0.4	0
39	Fluoxetine and Pirimicarb Abatement by Ecofriendly Electro-Fenton Process. Advances in Science, Technology and Innovation, 2020, , 117-120.	0.4	O
40	Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride. Separation and Purification Technology, 2019, 208, 34-41.	7.9	29
41	Double benefit of electrochemical techniques: Treatment and electroanalysis for remediation of water polluted with organic compounds. Electrochimica Acta, 2019, 320, 134628.	5.2	20
42	Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water (Switzerland), 2019, 11, 1695.	2.7	8
43	Sustainable Removal of Cr(VI) by Lime Peel and Pineapple Core Wastes. Applied Sciences (Switzerland), 2019, 9, 1967.	2.5	15
44	Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. Journal of Cleaner Production, 2019, 228, 222-230.	9.3	82
45	Selecting the best piping arrangement for scaling-up an annular channel reactor: An experimental and computational fluid dynamics study. Science of the Total Environment, 2019, 667, 821-832.	8.0	25
46	Synthesis of magnetic-photo-Fenton catalyst for degradation of emerging pollutant. Catalysis Today, 2019, 328, 267-273.	4.4	12
47	New approaches on the agrochemicals degradation by UV oxidation processes. Chemical Engineering Journal, 2019, 376, 120026.	12.7	15
48	Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environmental Science and Pollution Research, 2019, 26, 3145-3156.	5.3	26
49	Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Separation and Purification Technology, 2019, 208, 130-141.	7.9	40
50	A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support. Chemical Engineering Journal, 2018, 343, 597-606.	12.7	57
51	Current advances and trends in electro-Fenton process using heterogeneous catalysts – A review. Chemosphere, 2018, 201, 399-416.	8.2	270
52	Electro-Fenton process for implementation of acid black liquor waste treatment. Science of the Total Environment, 2018, 635, 397-404.	8.0	23
53	Optimization of photo-Fenton process for the treatment of prednisolone. Environmental Science and Pollution Research, 2018, 25, 27768-27782.	5.3	20
54	Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids. Chemosphere, 2018, 199, 68-75.	8.2	23

#	Article	IF	Citations
55	Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes. Science of the Total Environment, 2018, 622-623, 556-562.	8.0	46
56	Solid-State Fermentation for Food Applications. , 2018, , 319-355.		10
57	Evaluation of different cathodes and reaction parameters on the enhancement of the electro-Fenton process. Journal of Electroanalytical Chemistry, 2018, 808, 455-463.	3.8	29
58	Comprehensive solution for acetamiprid degradation: Combined electro-Fenton and adsorption process. Journal of Electroanalytical Chemistry, 2018, 808, 446-454.	3.8	33
59	An effective electroanalytical approach for the monitoring of electroactive dyes and intermediate products formed in electro-Fenton treatment. Journal of Electroanalytical Chemistry, 2018, 808, 403-411.	3.8	22
60	Fenton-based processes for the regeneration of catalytic adsorbents. Catalysis Today, 2018, 313, 122-127.	4.4	21
61	"Green technology― Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. Science of the Total Environment, 2018, 624, 1649-1657.	8.0	19
62	Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs ultraviolet/peracetic acid. Journal of Cleaner Production, 2018, 205, 67-75.	9.3	63
63	Highly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: Application to degradation of parabens. Chemical Engineering Research and Design, 2018, 117, 363-371.	5.6	21
64	Towards sustainable removal of methylthioninium chloride by using adsorption-electroradical regeneration. Chemosphere, 2018, 210, 476-485.	8.2	5
65	Electroanalytical techniques applied to monitoring the electro-Fenton degradation of aromatic imidazolium-based ionic liquids. Journal of Applied Electrochemistry, 2018, 48, 1331-1341.	2.9	12
66	FROM LAB TO LARGE SCALE: APPLICATION OF COLLABORATIVE MODELING TOOLS IN THE SUBJECT CHEMICAL TECHNOLOGY. , $2018, , .$		0
67	Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Chemical Engineering Research and Design, 2017, 108, 99-107.	5.6	28
68	Application of electro-Fenton treatment for the elimination of 1-Butyl-3-methylimidazolium triflate from polluted water. Chemical Engineering Journal, 2017, 318, 19-28.	12.7	34
69	Integrated approach of chemical and electrodialysis process in textile effluent contaminated groundwater for irrigation. Journal of Environmental Chemical Engineering, 2017, 5, 3190-3200.	6.7	8
70	Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. Journal of Electroanalytical Chemistry, 2017, 797, 69-77.	3.8	62
71	Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 2017, 246, 176-192.	9.6	192
72	Electrokinetic oxidant soil flushing: A solution for in situ remediation of hydrocarbons polluted soils. Journal of Electroanalytical Chemistry, 2017, 799, 1-8.	3.8	39

#	Article	IF	Citations
73	Immobilization of laccase of Pycnoporus sanguineus CS43. New Biotechnology, 2017, 39, 141-149.	4.4	38
74	Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. Environmental Science and Pollution Research, 2017, 24, 18309-18319.	5.3	17
75	p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere, 2017, 185, 726-736.	8.2	65
76	Sequential two-column electro-Fenton-photolytic reactor for the treatment of winery wastewater. Environmental Science and Pollution Research, 2017, 24, 1137-1151.	5.3	8
77	Assessment of LED-assisted electro-Fenton reactor for the treatment of winery wastewater. Chemical Engineering Journal, 2017, 310, 399-406.	12.7	30
78	Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. Chemosphere, 2016, 156, 347-356.	8.2	33
79	Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process. Environmental Science and Pollution Research, 2016, 23, 19134-19144.	5.3	17
80	Electrokinetic Remediation and Hybrid Technologies for the Treatment of Organic Pollutants. , 2016, , 1-20.		1
81	Coated nickel foam electrode for the implementation of continuous electroâ€Fenton treatment. Journal of Chemical Technology and Biotechnology, 2016, 91, 685-692.	3.2	15
82	Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Chemical Engineering Research and Design, 2016, 101, 19-26.	5.6	51
83	Electro-Fenton treatment of imidazolium-based ionic liquids: kinetics and degradation pathways. RSC Advances, 2016, 6, 1958-1965.	3.6	40
84	Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Chemical Engineering Research and Design, 2016, 101, 61-71.	5.6	71
85	Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions. Journal of Hazardous Materials, 2016, 319, 43-50.	12.4	64
86	Chestnut shells to mitigate pesticide contamination. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 166-173.	5.3	29
87	Removal of metal and organic pollutants from wastewater by a sequential selective technique. Bioresource Technology, 2016, 213, 2-10.	9.6	10
88	Greener technology for organic reactive dye degradation in textile dye-contaminated field soil and in situ formation of "electroactive species―at the anode by electrokinetics. RSC Advances, 2016, 6, 3552-3560.	3.6	21
89	Nickel foam a suitable alternative to increase the generation of Fenton's reagents. Chemical Engineering Research and Design, 2016, 101, 34-44.	5.6	45
90	Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater. Chemical Engineering Research and Design, 2016, 101, 72-79.	5.6	18

#	Article	IF	CITATIONS
91	Effective monitoring of the electro-Fenton degradation of phenolic derivatives by differential pulse voltammetry on multi-walled-carbon nanotubes modified screen-printed carbon electrodes. Applied Catalysis B: Environmental, 2016, 180, 544-550.	20.2	35
92	Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by <i>Pseudomonas stutzeri</i> <scp>CECT</scp> 930 immobilized in hydrogel matrices. Journal of Chemical Technology and Biotechnology, 2015, 90, 500-506.	3.2	23
93	Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresource Technology, 2015, 182, 41-49.	9.6	49
94	Environmental application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants. RSC Advances, 2015, 5, 14416-14424.	3.6	43
95	Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere, 2015, 125, 168-174.	8.2	70
96	Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. Journal of Industrial and Engineering Chemistry, 2015, 27, 276-282.	5.8	62
97	Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents. Separation and Purification Technology, 2015, 151, 243-250.	7.9	32
98	Scale-up of removal process using a remediating-bacterium isolated from marine coastal sediment. RSC Advances, 2015, 5, 36665-36672.	3.6	5
99	New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochimica Acta, 2015, 169, 134-141.	5.2	60
100	Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon. RSC Advances, 2015, 5, 31049-31056.	3.6	56
101	Electrokinetic remediation: challenging and optimization of electrolyte for sulfate removal in textile effluent-contaminated farming soil. RSC Advances, 2015, 5, 81052-81058.	3.6	13
102	Degradation of organic pollutants by heterogeneous electro-Fenton process using Mn-alginate composite. Journal of Chemical Technology and Biotechnology, 2015, 90, 1439-1447.	3.2	30
103	Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	11
104	Electroâ€Fenton decolourization of dyes in batch mode by the use of catalytic activity of iron loaded hydrogels. Journal of Chemical Technology and Biotechnology, 2014, 89, 1235-1242.	3.2	32
105	Surfactant-Enhanced Solubilization and Simultaneous Degradation of Phenanthrene in Marine Sediment by Electro-Fenton Treatment. Industrial & Engineering Chemistry Research, 2014, 53, 2917-2923.	3.7	42
106	Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecological Engineering, 2014, 67, 182-189.	3.6	46
107	Box–Behnken methodology for Cr (VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus. Bioresource Technology, 2014, 160, 166-174.	9.6	55
108	Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation. Journal of Industrial and Engineering Chemistry, 2014, 20, 3754-3760.	5.8	52

#	Article	IF	Citations
109	Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil. Chemosphere, 2014, 117, 673-678.	8.2	40
110	Assessment of sepiolite as a low-cost adsorbent for phenanthrene and pyrene removal: Kinetic and equilibrium studies. Ecological Engineering, 2014, 70, 287-294.	3.6	37
111	Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Applied Catalysis B: Environmental, 2014, 144, 416-424.	20.2	99
112	Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation. Environmental Science and Pollution Research, 2013, 20, 7348-7354.	5.3	13
113	Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5. Environmental Science and Pollution Research, 2013, 20, 5983-5993.	5.3	47
114	Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environmental Science and Pollution Research, 2013, 20, 2172-2183.	5.3	41
115	Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads. Environmental Science and Pollution Research, 2013, 20, 2252-2261.	5.3	28
116	Remediation of contaminated marine sediment using electrokinetic–Fenton technology. Journal of Industrial and Engineering Chemistry, 2013, 19, 932-937.	5.8	66
117	Feasibility of Solid‧tate Fermentation Using Spent Fungi‧ubstrate in the Biodegradation of PAHs. Clean - Soil, Air, Water, 2013, 41, 610-615.	1.1	29
118	Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere, 2013, 91, 711-716.	8.2	50
119	Bacterial–fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresource Technology, 2013, 148, 39-46.	9.6	81
120	Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma, 2012, 173-174, 128-133.	5.1	108
121	Advances in the Electroâ€Fenton Process for Remediation of Recalcitrant Organic Compounds. Chemical Engineering and Technology, 2012, 35, 609-617.	1.5	100
122	Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye. Environmental Science and Pollution Research, 2012, 19, 1738-1746.	5.3	68
123	Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers. Environmental Science and Pollution Research, 2012, 19, 1800-1808.	5.3	37
124	Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and Biosystems Engineering, 2012, 35, 851-855.	3.4	21
125	The impact of electrokinetic treatment on a loamy-sand soil properties. Chemical Engineering Journal, 2012, 183, 231-237.	12.7	66
126	Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 2012, 284, 150-156.	8.2	69

#	Article	lF	CITATION
127	Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of Hazardous Materials, 2012, 213-214, 369-377.	12.4	122
128	Desorption kinetics of phenanthrene and lead from historically contaminated soil. Chemical Engineering Journal, 2011, 167, 84-90.	12.7	36
129	Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination, 2011, 278, 312-317.	8.2	27
130	Hybrid Technologies for the Remediation of Diesel Fuel Polluted Soil. Chemical Engineering and Technology, 2011, 34, 2077-2082.	1.5	27
131	Development of an electrochemical cell for the removal of Reactive Black 5. Desalination, 2011, 274, 39-43.	8.2	58
132	Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. Journal of Hazardous Materials, 2010, 176, 1073-1078.	12.4	27
133	Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, 2010, 179, 1156-1160.	12.4	63
134	Removal of Cr(VI) from Aqueous Solutions by a Bacterial Biofilm Supported on Zeolite: Optimisation of the Operational Conditions and Scaleâ€Up of the Bioreactor. Chemical Engineering and Technology, 2010, 33, 2008-2014.	1.5	25
135	Remediation of polluted soil by a two-stage treatment system: Desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. Journal of Hazardous Materials, 2010, 173, 794-798.	12.4	63
136	Decontamination of soils containing PAHs by electroremediation: A review. Journal of Hazardous Materials, 2010, 177, 1-11.	12.4	184
137	Soil washing using cyclodextrins and their recovery by application of electrochemical technology. Chemical Engineering Journal, 2010, 159, 53-57.	12.7	49
138	Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1104-1110.	1.7	21
139	Improvement of dye electrochemical treatment by combination with ultrasound technique. Journal of Chemical Technology and Biotechnology, 2009, 84, 1118-1124.	3.2	36
140	PAHs soil decontamination in two steps: Desorption and electrochemical treatment. Journal of Hazardous Materials, 2009, 166, 462-468.	12.4	86
141	Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chemical Engineering Journal, 2009, 155, 62-67.	12.7	147
142	A two-stage process using electrokinetic remediation and electrochemical degradation for treating benzo[a]pyrene spiked kaolin. Chemosphere, 2009, 74, 1516-1521.	8.2	45
143	Evaluation of Electrokinetic Technique for Industrial Waste Decontamination. Separation Science and Technology, 2009, 44, 2304-2321.	2.5	29
144	Electrochemical remediation of phenanthrene from contaminated kaolinite. Environmental Geochemistry and Health, 2008, 30, 89-94.	3.4	29

#	Article	IF	CITATIONS
145	Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant–electrochemical degradation. Chemosphere, 2008, 70, 1438-1444.	8.2	93
146	Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 871-875.	1.7	23
147	Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 823-831.	1.7	21
148	Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 901-906.	1.7	28
149	Remediation of Dye-Polluted Kaolinite by Combination of Electrokinetic Remediation and Electrochemical Treatment. Environmental Engineering Science, 2008, 25, 419-428.	1.6	20
150	Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochimica Acta, 2007, 52, 3349-3354.	5.2	52
151	Enhanced electrokinetic remediation of polluted kaolinite with an azo dye. Electrochimica Acta, 2007, 52, 3393-3398.	5.2	30
152	Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor. World Journal of Microbiology and Biotechnology, 2007, 23, 1189-1194.	3.6	10
153	Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 2006, 62, 817-822.	8.2	79
154	Applicability of Coriolopsis rigida for Biodegradation of Polycyclic Aromatic Hydrocarbons. Biotechnology Letters, 2006, 28, 1013-1017.	2,2	14
155	Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Journal of Food Engineering, 2005, 68, 315-319.	5.2	63
156	Decolourisation of textile indigo dye by DC electric current. Engineering Geology, 2005, 77, 253-261.	6.3	34
157	Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up. Chemosphere, 2005, 60, 1080-1086.	8.2	59
158	Optimisation of electrochemical decolourisation process of an azo dye, Methyl Orange. Journal of Chemical Technology and Biotechnology, 2004, 79, 1349-1353.	3.2	33
159	Electrochemical decolourisation of structurally different dyes. Chemosphere, 2004, 57, 233-239.	8.2	135
160	Enhanced decolourisation ability of laccase towards various synthetic dyes by an electrocatalysis technology. Biotechnology Letters, 2003, 25, 603-606.	2,2	8