Konrad Lohse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2355199/publications.pdf

Version: 2024-02-01

51 papers

1,511 citations

430874 18 h-index 395702 33 g-index

66 all docs 66
docs citations

66 times ranked 2004 citing authors

#	Article	IF	CITATIONS
1	The genome sequence of the lesser marbled fritillary, $\langle i \rangle$ Brenthis ino $\langle i \rangle$, and evidence for a segregating neo-Z chromosome. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
2	Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 2022, 220, .	2.9	133
3	The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 2021, 30, 3575-3589.	3.9	35
4	Sweeps in time: leveraging the joint distribution of branch lengths. Genetics, 2021, 219, .	2.9	14
5	Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Molecular Ecology, 2021, 30, 4538-4550.	3.9	5
6	The genome sequence of the large tortoiseshell, Nymphalis polychloros (Linnaeus, 1758). Wellcome Open Research, 2021, 6, 238.	1.8	3
7	The genome sequence of the heath fritillary, Melitaea athalia (Rottemburg, 1775). Wellcome Open Research, 2021, 6, 304.	1.8	1
8	The impact of global selection on local adaptation and reproductive isolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190531.	4.0	11
9	Low overage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp. Molecular Ecology, 2020, 29, 3649-3666.	3.9	4
10	Coalescent Simulation with msprime. Methods in Molecular Biology, 2020, 2090, 191-230.	0.9	23
11	The determinants of genetic diversity in butterflies. Nature Communications, 2019, 10, 3466.	12.8	80
12	Maintaining their genetic distance: Little evidence for introgression between widely hybridizing species of <i>Geum</i> with contrasting mating systems. Molecular Ecology, 2018, 27, 1214-1228.	3.9	19
13	Divergent evolution in the genomes of closely-related lacertids, Lacerta viridis and L. bilineata and implications for speciation. GigaScience, $2018, 8, .$	6.4	10
14	ABLE: blockwise site frequency spectra for inferring complex population histories and recombination. Genome Biology, 2018, 19, 145.	8.8	16
15	Whole-genome data reveal the complex history of a diverse ecological community. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6507-E6515.	7.1	45
16	Come on feel the noise – from metaphors to null models. Journal of Evolutionary Biology, 2017, 30, 1506-1508.	1.7	17
17	Para-allopatry in hybridizing fire-bellied toads (<i>Bombina bombina</i> and <i>B. variegata</i>): Inference from transcriptome-wide coalescence analyses. Evolution; International Journal of Organic Evolution, 2016, 70, 1803-1818.	2.3	25
18	Efficient Strategies for Calculating Blockwise Likelihoods Under the Coalescent. Genetics, 2016, 202, 775-786.	2.9	62

#	Article	IF	CITATIONS
19	What haplodiploids can teach us about hybridization and speciation. Molecular Ecology, 2015, 24, 5075-5077.	3.9	20
20	Genome-wide tests for introgression between cactophilic <i>Drosophila</i> iiinplicate a role of inversions during speciation. Evolution; International Journal of Organic Evolution, 2015, 69, 1178-1190.	2.3	70
21	Inferring Bottlenecks from Genome-Wide Samples of Short Sequence Blocks. Genetics, 2015, 201, 1157-1169.	2.9	40
22	Likelihoodâ€based inference of population history from lowâ€coverage <i>de novo</i> genome assemblies. Molecular Ecology, 2014, 23, 198-211.	3.9	28
23	Testing models of speciation from genome sequences: divergence and asymmetric admixture in <scp>I</scp> sland <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>A</scp> sian <i><scp>S</scp>us</i> >during the <scp>P</scp> lioâ€ <scp>P</scp> leistocene climatic fluctuations. Molecular Ecology, 2014, 23, 5566-5574.	3.9	32
24	RECOMMENDATIONS FOR USING MSBAYES TO INCORPORATE UNCERTAINTY IN SELECTING AN ABC MODEL PRIOR: A RESPONSE TO OAKS ET AL Evolution; International Journal of Organic Evolution, 2014, 68, 284-294.	2.3	29
25	Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes. Genetics, 2014, 196, 1241-1251.	2.9	78
26	A new genus of oak gallwasp, Cyclocynips Melika, Tang & Sinclair (Hymenoptera: Cynipidae: Cynipini), with descriptions of two new species from Taiwan . Zootaxa, 2013, 3630, 534-548.	0.5	13
27	A likelihoodâ€based comparison of population histories in a parasitoid guild. Molecular Ecology, 2012, 21, 4605-4617.	3.9	19
28	Reconstructing Community Assembly in Time and Space Reveals Enemy Escape in a Western Palearctic Insect Community. Current Biology, 2012, 22, 532-537.	3.9	95
29	Modelâ€based comparisons of phylogeographic scenarios resolve the intraspecific divergence of cactophilic <i>Drosophila mojavensis</i> i>. Molecular Ecology, 2012, 21, 3293-3307.	3.9	36
30	Developing EPIC markers for chalcidoid Hymenoptera from EST and genomic data. Molecular Ecology Resources, 2011, 11, 521-529.	4.8	17
31	Inferring the colonization of a mountain range-refugia vs. nunatak survival in high alpine ground beetles. Molecular Ecology, 2011, 20, 394-408.	3.9	44
32	A General Method for Calculating Likelihoods Under the Coalescent Process. Genetics, 2011, 189, 977-987.	2.9	108
33	QUANTIFYING THE PLEISTOCENE HISTORY OF THE OAK GALL PARASITOID CECIDOSTIBA FUNGOSA USING TWENTY INTRON LOCI. Evolution; International Journal of Organic Evolution, 2010, 64, 2664-2681.	2.3	26
34	Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology, 2010, 35, 623-638.	2.2	118
35	Can mtDNA Barcodes Be Used to Delimit Species? A Response to Pons et al. (2006). Systematic Biology, 2009, 58, 439-442.	5.6	161
36	Measuring the degree of starshape in genealogies – summary statistics and demographic inference. Genetical Research, 2009, 91, 281-292.	0.9	6

#	Article	IF	CITATIONS
37	EXPERIMENTAL EVOLUTION OF RESISTANCE IN PARAMECIUM CAUDATUM AGAINST THE BACTERIAL PARASITE HOLOSPORA UNDULATA. Evolution; International Journal of Organic Evolution, 2006, 60, 1177.	2.3	4
38	The genome sequence of the small tortoiseshell butterfly, Aglais urticae (Linnaeus, 1758). Wellcome Open Research, 0, 6, 233.	1.8	4
39	The genome sequence of the Glanville fritillary, Melitaea cinxia (Linnaeus, 1758). Wellcome Open Research, 0, 6, 266.	1.8	1
40	The genome sequence of the small white, Pieris rapae (Linnaeus, 1758). Wellcome Open Research, 0, 6, 273.	1.8	2
41	The genome sequence of the speckled wood butterfly, Pararge aegeria (Linnaeus, 1758). Wellcome Open Research, 0, 6, 287.	1.8	3
42	The genome sequence of the European peacock butterfly, Aglais io (Linnaeus, 1758). Wellcome Open Research, 0, 6, 258.	1.8	4
43	The genome sequence of the large white, Pieris brassicae (Linnaeus, 1758). Wellcome Open Research, 0, 6, 262.	1.8	2
44	The genome sequence of the small copper, Lycaena phlaeas (Linnaeus, 1760). Wellcome Open Research, 0, 6, 294.	1.8	1
45	The genome sequence of the meadow brown, Maniola jurtina (Linnaeus, 1758). Wellcome Open Research, 0, 6, 296.	1.8	1
46	The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758. Wellcome Open Research, 0, 6, 324.	1.8	11
47	The genome sequence of the grizzled skipper, Pyrgus malvae (Linnaeus, 1758). Wellcome Open Research, 0, 7, 114.	1.8	0
48	The genome sequence of the small pearl-bordered fritillary butterfly, Boloria selene (Schiffermul̀ Îler,) Tj ETQq0 0	0 rg.BT /O	verlock 10 Tf
49	The genome sequence of the black-veined white butterfly, Aporia crataegi (Linnaeus, 1758). Wellcome Open Research, 0, 7, 81.	1.8	1
50	The genome sequence of the marbled white butterfly, Melanargia galathea (Linnaeus, 1758). Wellcome Open Research, 0, 7, 123.	1.8	1
51	The genome sequence of the red admiral, Vanessa atalanta (Linnaeus, 1758). Wellcome Open Research, 0, 6, 356.	1.8	2