Swarup Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2354744/publications.pdf

Version: 2024-02-01

94 papers 4,537 citations

76294 40 h-index 110317 64 g-index

96 all docs 96
docs citations

96 times ranked 2650 citing authors

#	Article	IF	CITATIONS
1	New insight into melanin for food packaging and biotechnology applications. Critical Reviews in Food Science and Nutrition, 2022, 62, 4629-4655.	5.4	57
2	Enhanced functionality of green synthesized sulfur nanoparticles using kiwifruit (Actinidia deliciosa) peel polyphenols as capping agents. Journal of Nanostructure in Chemistry, 2022, 12, 389-399.	5.3	23
3	Ecological safety with multifunctional applications of biogenic mono and bimetallic (Au–Ag) alloy nanoparticles. Chemosphere, 2022, 288, 132585.	4.2	10
4	Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocolloids, 2022, 124, 107294.	5.6	85
5	Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications - A review. Sustainable Materials and Technologies, 2022, 32, e00353.	1.7	40
6	Preparation of turmeric-derived sulfur-functionalized carbon dots: antibacterial and antioxidant activity. Journal of Materials Science, 2022, 57, 2941-2952.	1.7	42
7	Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128123.	2.3	48
8	Curcumin and its uses in active and smart food packaging applications - a comprehensive review. Food Chemistry, 2022, 375, 131885.	4.2	96
9	Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, 2022, 32, e00397.	1.7	35
10	Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications. Journal of Nanostructure in Chemistry, 2022, 12, 979-990.	5.3	15
11	Alginate Biofunctional Films Modified with Melanin from Watermelon Seeds and Zinc Oxide/Silver Nanoparticles. Materials, 2022, 15, 2381.	1.3	25
12	Fabrication of Antioxidant and Antimicrobial Pullulan/Gelatin Films Integrated with Grape Seed Extract and Sulfur Nanoparticles. ACS Applied Bio Materials, 2022, 5, 2316-2323.	2.3	16
13	A Facile In Situ Synthesis of Resorcinol-Mediated Silver Nanoparticles and the Fabrication of Agar-Based Functional Nanocomposite Films. Journal of Composites Science, 2022, 6, 124.	1.4	2
14	Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. Coatings, 2022, 12, 577.	1.2	14
15	Genipin-Crosslinked Gelatin/Chitosan-Based Functional Films Incorporated with Rosemary Essential Oil and Quercetin. Materials, 2022, 15, 3769.	1.3	30
16	Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. Food Bioscience, 2022, 49, 101867.	2.0	33
17	Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Research International, 2022, 160, 111690.	2.9	50
18	Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition, 2021, 61, 2297-2325.	5.4	263

#	Article	IF	Citations
19	Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. Journal of Environmental Chemical Engineering, 2021, 9, 104694.	3.3	75
20	Preparation of Gelatin/Carrageenan-Based Color-Indicator Film Integrated with Shikonin and Propolis for Smart Food Packaging Applications. ACS Applied Bio Materials, 2021, 4, 770-779.	2.3	104
21	Synthesis of Carboxymethyl Cellulose and Agar-Based Multifunctional Films Reinforced with Cellulose Nanocrystals and Shikonin. ACS Applied Polymer Materials, 2021, 3, 1060-1069.	2.0	59
22	Cellulose Nanofiber-Based Nanocomposite Films Reinforced with Zinc Oxide Nanorods and Grapefruit Seed Extract. Nanomaterials, 2021, 11, 877.	1.9	57
23	Preparation of lowâ€density polyethylene―and poly (lactide)/poly (butylene) Tj ETQq1 1 0.784314 rgBT /Overlo	ck 10 Tf 5 1.3	60 587 Td (ac 13
24	Fabrication of Carboxymethyl Cellulose/Agar-Based Functional Films Hybridized with Alizarin and Grapefruit Seed Extract. ACS Applied Bio Materials, 2021, 4, 4470-4478.	2.3	37
25	Fabrication of cellulose nanofiber-based functional color indicator film incorporated with shikonin extracted from Lithospermum erythrorhizon root. Food Hydrocolloids, 2021, 114, 106566.	5.6	58
26	Gelatin-Based Film Integrated with Copper Sulfide Nanoparticles for Active Packaging Applications. Applied Sciences (Switzerland), 2021, 11, 6307.	1.3	41
27	Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. International Journal of Biological Macromolecules, 2021, 183, 305-315.	3.6	64
28	Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111830.	2.5	87
29	Effect of chitosan modified halloysite on the physical and functional properties of pullulan/chitosan biofilm integrated with rutin. Applied Clay Science, 2021, 211, 106205.	2.6	45
30	Silver loaded aminosilane modified halloysite for the preparation of carrageenan-based functional films. Applied Clay Science, 2021, 211, 106170.	2.6	17
31	Fabrication of pectin/agar blended functional film: Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 2021, 118, 106823.	5 . 6	59
32	Effect of Free Volume on Curcumin Release from Various Polymer-Based Composite Films Analyzed Using Positron Annihilation Lifetime Spectroscopy. Materials, 2021, 14, 5679.	1.3	5
33	Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering, 2021, 9, 106043.	3.3	55
34	Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127220.	2.3	79
35	Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111999.	2.5	38
36	Fabrication of chitosan-based functional nanocomposite films: Effect of quercetin-loaded chitosan nanoparticles. Food Hydrocolloids, 2021, 121, 107065.	5.6	69

#	Article	IF	CITATIONS
37	Tannic-Acid-Cross-Linked and TiO2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers, 2021, 13, 228.	2.0	56
38	Gelatin/Carrageenan-Based Functional Films with Carbon Dots from Enoki Mushroom for Active Food Packaging Applications. ACS Applied Polymer Materials, 2021, 3, 6437-6445.	2.0	73
39	Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 2021, 193, 2038-2046.	3.6	55
40	Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods, 2021, 10, 2789.	1.9	54
41	Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocolloids, 2020, 98, 105302.	5.6	156
42	Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110761.	2.5	163
43	Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydrate Polymers, 2020, 231, 115729.	5.1	101
44	Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. International Journal of Biological Macromolecules, 2020, 162, 1780-1789.	3.6	152
45	Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. International Journal of Biological Macromolecules, 2020, 164, 37-44.	3.6	71
46	Fabrication of Copper Sulfide Nanoparticles and Limonene Incorporated Pullulan/Carrageenan-Based Film with Improved Mechanical and Antibacterial Properties. Polymers, 2020, 12, 2665.	2.0	41
47	Curcumin Incorporated Poly(Butylene Adipate-co-Terephthalate) Film with Improved Water Vapor Barrier and Antioxidant Properties. Materials, 2020, 13, 4369.	1.3	36
48	Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications, 2020, 24, 100984.	0.9	59
49	Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 2020, 148, 666-676.	3.6	275
50	Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Scientific Reports, 2020, 10, 277.	1.6	29
51	Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	42
52	Analysis of binding affinity of biologically active material spiro-pyrimidine and DNA: a spectroscopic approach. Advances in Materials and Processing Technologies, 2019, 5, 360-370.	0.8	1
53	Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids, 2019, 94, 391-398.	5.6	110
54	Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids, 2019, 93, 156-166.	5.6	97

#	Article	IF	Citations
55	Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 2019, 90, 500-507.	5. 6	155
56	Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 317-324.	2.5	79
57	Structural and optical properties of polyaniline-green silver nanocomposite. Advances in Materials and Processing Technologies, 2019, 5, 172-180.	0.8	2
58	Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 2019, 88, 237-246.	5.6	189
59	Polydopamine-nanocellulose nanocomposites: physical and electrical properties for biomedical electrodes., 2019,,.		O
60	Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
61	Spectroscopic Evidence of Phosphorous Heterocycle–DNA Interaction and its Verification by Docking Approach. Journal of Fluorescence, 2018, 28, 373-380.	1.3	5
62	Binding behaviors of greenly synthesized silver nanoparticles – Lysozyme interaction: Spectroscopic approach. Journal of Molecular Structure, 2018, 1154, 145-151.	1.8	19
63	Binding affinity of pyrano[3, 2-f]quinoline and DNA: spectroscopic and docking approach. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3869-3877.	2.0	4
64	Probing the binding interaction of lysozyme-viologen herbicide. Journal of Molecular Structure, 2018, 1171, 1-8.	1.8	4
65	Tent-Shaped Surface Morphologies of Silicon: Texturization by Metal Induced Etching. Silicon, 2018, 10, 2801-2807.	1.8	8
66	Interfacial redox centers as origin of color switching in organic electrochromic device. Optical Materials, 2017, 66, 65-71.	1.7	45
67	Spectral Anomaly in Raman Scattering from p-Type Silicon Nanowires. Journal of Physical Chemistry C, 2017, 121, 5372-5378.	1.5	39
68	Live spectroscopy to observe electrochromism in viologen based solid state device. Solid State Communications, 2017, 261, 17-20.	0.9	21
69	An insight of spirooxindole-annulated thiopyran – DNA interaction: spectroscopic and docking approach of these biological materials. Advances in Materials and Processing Technologies, 2017, 3, 339-352.	0.8	1
70	An insight of binding interaction between Tryptophan, Tyrosine and Phenylalanine separately with green gold nanoparticles by fluorescence quenching method. Optik, 2017, 138, 280-288.	1.4	24
71	Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. Journal of Molecular Structure, 2017, 1139, 447-454.	1.8	7
72	Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 257-263.	1.9	26

#	Article	IF	CITATIONS
73	Fast electrochromic display: tetrathiafulvalene–graphene nanoflake as facilitating materials. Journal of Materials Chemistry C, 2017, 5, 9504-9512.	2.7	55
74	Ecofriendly gold nanoparticles – Lysozyme interaction: Thermodynamical perspectives. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 284-290.	1.7	22
75	Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Physical Chemistry Chemical Physics, 2017, 19, 31788-31795.	1.3	36
76	Construction of well aligned highly dense Cobalt nanoneedles for efficient device application. Advances in Materials and Processing Technologies, 2017, 3, 627-631.	0.8	2
77	Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study. Journal of Pharmaceutical Analysis, 2017, 7, 19-26.	2.4	71
78	Green Synthesized Gold Nanoparticles: Study of Antimicrobial Activity. Journal of Bionanoscience, 2017, 11, 131-135.	0.4	6
79	Report of Interaction Between Calf Thymus DNA and Pyrimidine-Annulated Spiro-Dihydrofuran. Biochemistry and Analytical Biochemistry: Current Research, 2016, 5, .	0.4	7
80	Interaction of biosynthesized gold nanoparticles with BSA and CTDNA: A multi-spectroscopic approach. Polyhedron, 2016, 115, 111-118.	1.0	32
81	Effect of biosynthesized silver nanoparticles on the growth and some biochemical parameters of $@@$ Aspergillus foetidus. Journal of Environmental Chemical Engineering, 2016, 4, 1574-1583.	3.3	16
82	Microbial biosynthesis of nontoxic gold nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 203, 41-51.	1.7	55
83	Interaction Of Bovine Serum Albumin With Synthetic Spiropyrimidines. Advanced Materials Letters, 2016, 7, 65-70.	0.3	1
84	The Interaction of Biosynthesized Gold Nanoparticles with Casein Enzyme Hydrolysate. Journal of Bionanoscience, 2015, 9, 424-430.	0.4	5
85	Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 176-184.	2.0	58
86	Study of Interaction Between Tryptophan, Tyrosine, and Phenylalanine Separately with Silver Nanoparticles by Fluorescence Quenching Method. Journal of Applied Spectroscopy, 2015, 82, 598-606.	0.3	38
87	Biophysical Study On The Interaction Of Spirooxindole-Annulated Thiopyran Derivatives With Bovine Serum Albumin Using Spectroscopic And Docking Methods. Advanced Materials Letters, 2015, 6, 913-919.	0.3	4
88	Studies Of The Interaction Of Bovine Serum Albumin With Pyrimidine-annulated Spiro-dihydrofuran And Its Biological Activities. Advanced Materials Letters, 2015, 6, 1018-1024.	0.3	8
89	Combined Spectroscopic And Molecular Docking Study Of Binding Interaction Of Pyrano [3, 2-F] Quinoline Derivatives With Bovine Serum Albumins And Its Application In Mammalian Cell Imaging. Advanced Materials Letters, 2015, 6, 1004-1011.	0.3	1
90	Spectroscopic Studies of Interaction Between Biologically Synthesized Silver Nanoparticles and Bovine Serum Albumin. Journal of Nanoscience and Nanotechnology, 2014, 14, 4899-4905.	0.9	33

SWARUP ROY

#	Article	IF	CITATIONS
91	Effect of Silver Nanoparticles on Vitamin C by Analyzing the Change of Photoluminescence Spectrum of Vitamin C. Advanced Science, Engineering and Medicine, 2014, 6, 1105-1110.	0.3	2
92	Biosynthesis of Silver Nanoparticles by <l>Aspergillus foetidus</l> : Optimization of Physicochemical Parameters. Nanoscience and Nanotechnology Letters, 2014, 6, 181-189.	0.4	14
93	Investigation of Interaction Between Casein Enzyme Hydrolysate and Biosynthesized Silver Nanoparticles by Spectroscopy. Nanoscience and Nanotechnology Letters, 2014, 6, 547-554.	0.4	13
94	Synthesis and standardization of biologically synthesized silver nanoparticles., 2013,,.		3