Matthew J Grigg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Regularly Dosed Acetaminophen vs No Acetaminophen on Renal Function in <i>Plasmodium knowlesi</i> Malaria (PACKNOW): A Randomized, Controlled Trial. Clinical Infectious Diseases, 2022, 75, 1379-1388.	5.8	10
2	Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors. Malaria Journal, 2022, 21, 109.	2.3	22
3	Diagnostic performance of a 5-plex malaria immunoassay in regions co-endemic for Plasmodium falciparum, P. vivax, P. knowlesi, P. malariae and P. ovale. Scientific Reports, 2022, 12, 7286.	3.3	6
4	Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P.Âknowlesi. Cell Reports Medicine, 2022, 3, 100662.	6.5	6
5	Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Neglected Tropical Diseases, 2022, 16, e0010492.	3.0	2
6	Reduced circulating dendritic cells in acute Plasmodium knowlesi and Plasmodium falciparum malaria despite elevated plasma Flt3 ligand levels. Malaria Journal, 2021, 20, 97.	2.3	3
7	An Evaluation of Commonly Used Surrogate Baseline Creatinine Values to Classify AKI During Acute Infection. Kidney International Reports, 2021, 6, 645-656.	0.8	22
8	Endothelial glycocalyx degradation and disease severity in Plasmodium vivax and Plasmodium knowlesi malaria. Scientific Reports, 2021, 11, 9741.	3.3	6
9	Plasmodium knowlesi detection methods for human infections—Diagnosis and surveillance. Advances in Parasitology, 2021, 113, 77-130.	3.2	7
10	Clinical management of Plasmodium knowlesi malaria. Advances in Parasitology, 2021, 113, 45-76.	3.2	15
11	Knowlesi malaria: Human risk factors, clinical spectrum, and pathophysiology. Advances in Parasitology, 2021, 113, 1-43.	3.2	14
12	<i>Plasmodium knowlesi</i> Malaria in Sabah, Malaysia, 2015–2017: Ongoing Increase in Incidence Despite Near-elimination of the Human-only <i>Plasmodium</i> Species. Clinical Infectious Diseases, 2020, 70, 361-367.	5.8	97
13	The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Medicine, 2020, 17, e1003359.	8.4	50
14	Comparative evaluation of two commercial real-time PCR kits (QuantiFastâ,,¢ and abTESâ,,¢) for the detection of Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia. Malaria Journal, 2020, 19, 306.	2.3	14
15	A population of CD4 hi CD38 hi T cells correlates with disease severity in patients with acute malaria. Clinical and Translational Immunology, 2020, 9, e1209.	3.8	3
16	Malaria Parasite Clearance: What Are We Really Measuring?. Trends in Parasitology, 2020, 36, 413-426.	3.3	21
17	Liver Function Test Abnormalities in Experimental and Clinical Plasmodium vivax Infection. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1910-1917.	1.4	16
18	Induction and Kinetics of Complement-Fixing Antibodies Against Plasmodium vivax Merozoite Surface Protein 31̂± and Relationship With Immunoglobulin G Subclasses and Immunoglobulin M. Journal of Infectious Diseases, 2019, 220, 1950-1961.	4.0	15

MATTHEW J GRIGG

#	Article	IF	CITATIONS
19	The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Medicine, 2019, 17, 151.	5.5	34
20	Antiphosphatidylserine Immunoglobulin M and Immunoglobulin G Antibodies Are Higher in Vivax Than Falciparum Malaria, and Associated With Early Anemia in Both Species. Journal of Infectious Diseases, 2019, 220, 1435-1443.	4.0	26
21	lgM in human immunity to <i>Plasmodium falciparum</i> malaria. Science Advances, 2019, 5, eaax4489.	10.3	92
22	Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malaria Journal, 2019, 18, 312.	2.3	7
23	The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Medicine, 2019, 16, e1002928.	8.4	27
24	Environmental risk factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, Malaysia: a population-based cross-sectional survey. Lancet Planetary Health, The, 2019, 3, e179-e186.	11.4	75
25	Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182351.	2.6	51
26	Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathogens, 2019, 15, e1008216.	4.7	50
27	Deaths From Plasmodium knowlesi Malaria: Case Series and Systematic Review. Clinical Infectious Diseases, 2019, 69, 1703-1711.	5.8	57
28	Zoonotic Malaria: The Better You Look, the More You Find. Journal of Infectious Diseases, 2019, 219, 679-681.	4.0	22
29	Title is missing!. , 2019, 15, e1008216.		0
30	Title is missing!. , 2019, 15, e1008216.		0
31	Title is missing!. , 2019, 15, e1008216.		0
32	The effect of regularly dosed paracetamol versus no paracetamol on renal function in Plasmodium knowlesi malaria (PACKNOW): study protocol for a randomised controlled trial. Trials, 2018, 19, 250.	1.6	15
33	Artemether-Lumefantrine Versus Chloroquine for the Treatment of Uncomplicated Plasmodium knowlesi Malaria: An Open-Label Randomized Controlled Trial CAN KNOW. Clinical Infectious Diseases, 2018, 66, 229-236.	5.8	26
34	Plasmodium falciparum artemisinin resistance monitoring in Sabah, Malaysia: in vivo therapeutic efficacy and kelch13 molecular marker surveillance. Malaria Journal, 2018, 17, 463.	2.3	8
35	Reduced red blood cell deformability in Plasmodium knowlesi malaria. Blood Advances, 2018, 2, 433-443.	5.2	34
36	Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics. Nature Communications, 2018, 9, 2585.	12.8	59

MATTHEW J GRIGG

#	Article	IF	CITATIONS
37	The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infectious Diseases, The, 2018, 18, 1025-1034.	9.1	85
38	Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood, 2018, 132, 1332-1344.	1.4	85
39	Intravascular haemolysis in severe <i>Plasmodium knowlesi</i> malaria: association with endothelial activation, microvascular dysfunction, and acute kidney injury. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	43
40	Age-Related Clinical Spectrum of Plasmodium knowlesi Malaria and Predictors of Severity. Clinical Infectious Diseases, 2018, 67, 350-359.	5.8	78
41	Exposure and infection to Plasmodium knowlesi in case study communities in Northern Sabah, Malaysia and Palawan, The Philippines. PLoS Neglected Tropical Diseases, 2018, 12, e0006432.	3.0	72
42	Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Neglected Tropical Diseases, 2018, 12, e0006457.	3.0	26
43	Plasmodium simium : a Brazilian focus of anthropozoonotic vivax malaria?. The Lancet Global Health, 2017, 5, e961-e962.	6.3	18
44	Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Scientific Reports, 2017, 7, 2596.	3.3	24
45	Effects of Aging on Parasite Biomass, Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in <i>Plasmodium knowlesi</i> and <i>Plasmodium falciparum</i> Malaria. Journal of Infectious Diseases, 2017, 215, 1908-1917.	4.0	34
46	Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study. Lancet Planetary Health, The, 2017, 1, e97-e104.	11.4	99
47	Detection of Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax using loop-mediated isothermal amplification (LAMP) in a co-endemic area in Malaysia. Malaria Journal, 2017, 16, 29.	2.3	40
48	World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal, 2017, 16, 135.	2.3	97
49	The Treatment of Plasmodium knowlesi Malaria. Trends in Parasitology, 2017, 33, 242-253.	3.3	47
50	Association between Landscape Factors and Spatial Patterns of <i>Plasmodium knowlesi</i> Infections in Sabah, Malaysia. Emerging Infectious Diseases, 2016, 22, 201-209.	4.3	138
51	Falling <i>Plasmodium knowlesi</i> Malaria Death Rate among Adults despite Rising Incidence, Sabah, Malaysia, 2010–2014. Emerging Infectious Diseases, 2016, 22, 41-8.	4.3	58
52	Intravascular haemolysis with haemoglobinuria in a splenectomized patient with severe Plasmodium knowlesi malaria. Malaria Journal, 2016, 15, 462.	2.3	15
53	Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination. PLoS Neglected Tropical Diseases, 2016, 10, e0004443.	3.0	38
54	Transfusion-transmitted severe Plasmodium knowlesi malaria in a splenectomized patient with beta-thalassaemia major in Sabah, Malaysia: a case report. Malaria Journal, 2016, 15, 357.	2.3	15

MATTHEW J GRIGG

#	Article	IF	CITATIONS
55	Efficacy of Artesunate-mefloquine for Chloroquine-resistantPlasmodium vivaxMalaria in Malaysia: An Open-label, Randomized, Controlled Trial. Clinical Infectious Diseases, 2016, 62, 1403-1411.	5.8	44
56	A Sensitive, Colorimetric, High-Throughput Loop-Mediated Isothermal Amplification Assay for the Detection of Plasmodium knowlesi. American Journal of Tropical Medicine and Hygiene, 2016, 95, 120-122.	1.4	21
57	Nitric Oxide–Dependent Endothelial Dysfunction and Reduced Arginine Bioavailability in Plasmodium vivax Malaria but No Greater Increase in Intravascular Hemolysis in Severe Disease. Journal of Infectious Diseases, 2016, 214, 1557-1564.	4.0	19
58	Asymptomatic and Submicroscopic Carriage of <i>Plasmodium knowlesi</i> Malaria in Household and Community Members of Clinical Cases in Sabah, Malaysia. Journal of Infectious Diseases, 2016, 213, 784-787.	4.0	64
59	Asymmetric Dimethylarginine in Adult Falciparum Malaria: Relationships With Disease Severity, Antimalarial Treatment, Hemolysis, and Inflammation. Open Forum Infectious Diseases, 2016, 3, ofw027.	0.9	13
60	Retinal Changes in Uncomplicated and SeverePlasmodium knowlesiMalaria. Journal of Infectious Diseases, 2016, 213, 1476-1482.	4.0	11
61	Artesunate–mefloquine versus chloroquine for treatment of uncomplicated Plasmodium knowlesi malaria in Malaysia (ACT KNOW): an open-label, randomised controlled trial. Lancet Infectious Diseases, The, 2016, 16, 180-188.	9.1	58
62	Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia. PLoS ONE, 2016, 11, e0149519.	2.5	17
63	<i>Plasmodium knowlesi</i> Malaria During Pregnancy. Journal of Infectious Diseases, 2015, 211, 1104-1110.	4.0	20
64	Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria. PLoS Pathogens, 2015, 11, e1004558.	4.7	120
65	Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malaria Journal, 2014, 13, 390.	2.3	107
66	Combining Parasite Lactate Dehydrogenase-Based and Histidine-Rich Protein 2-Based Rapid Tests To Improve Specificity for Diagnosis of Malaria Due to Plasmodium knowlesi and Other Plasmodium Species in Sabah, Malaysia. Journal of Clinical Microbiology, 2014, 52, 2053-2060.	3.9	46
67	Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malaria Journal, 2013, 12, 8.	2.3	121
68	A Prospective Comparative Study of Knowlesi, Falciparum, and Vivax Malaria in Sabah, Malaysia: High Proportion With Severe Disease From Plasmodium Knowlesi and Plasmodium Vivax But No Mortality With Early Referral and Artesunate Therapy. Clinical Infectious Diseases, 2013, 56, 383-397.	5.8	207
69	Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Neglected Tropical Diseases, 2013, 7, e2026.	3.0	132
70	Evaluation of the Sensitivity of a pLDH-Based and an Aldolase-Based Rapid Diagnostic Test for Diagnosis of Uncomplicated and Severe Malaria Caused by PCR-Confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. Journal of Clinical Microbiology, 2013, 51, 1118-1123.	3.9	80
71	Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia. PLoS ONE, 2013, 8, e82553.	2.5	45
72	Epidemiology of Plasmodium knowlesi malaria in north-east Sabah, Malaysia: family clusters and wide age distribution. Malaria Journal, 2012, 11, 401.	2.3	78