Zhanyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environmental Science & Technology, 2017, 51, 2508-2518.	10.0	971
2	An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Sciences: Processes and Impacts, 2020, 22, 2345-2373.	3.5	632
3	Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International, 2013, 60, 242-248.	10.0	623
4	Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 2014, 70, 62-75.	10.0	521
5	Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environmental Science & Technology, 2022, 56, 1510-1521.	10.0	477
6	Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environmental Science & Technology, 2020, 54, 2575-2584.	10.0	456
7	Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environment International, 2015, 75, 172-179.	10.0	420
8	Per- and polyfluoroalkyl substances in the environment. Science, 2022, 375, eabg9065.	12.6	396
9	Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science and Technology Letters, 2020, 7, 532-543.	8.7	278
10	Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573, 1132-1146.	8.0	230
11	Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environmental Science & Technology, 2021, 55, 9339-9351.	10.0	223
12	Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environmental Chemistry, 2011, 8, 389.	1.5	202
13	The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2015, 123, A107-11.	6.0	199
14	Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environment International, 2014, 69, 166-176.	10.0	185
15	HelsingÃr Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere, 2014, 114, 337-339.	8.2	175
16	The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater. Environment International, 2016, 94, 331-340.	10.0	151
17	Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & amp; Technology, 2020, 54, 12820-12828.	10.0	149
18	A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Science of the Total Environment, 2015, 505, 981-991.	8.0	144

ZHANYUN WANG

#	Article	IF	CITATIONS
19	A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environmental Science & Technology, 2021, 55, 15575-15578.	10.0	134
20	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	3.5	126
21	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	3.5	125
22	The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Sciences: Processes and Impacts, 2020, 22, 2307-2312.	3.5	125
23	Fluorinated Compounds in North American Cosmetics. Environmental Science and Technology Letters, 2021, 8, 538-544.	8.7	120
24	Toward a Comprehensive Global Emission Inventory of C ₄ –C ₁₀ Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C ₈ -Based Products and Ongoing Industrial Transition. Environmental Science & Technology, 2017, 51, 4482-4493.	10.0	109
25	Why is high persistence alone a major cause of concern?. Environmental Sciences: Processes and Impacts, 2019, 21, 781-792.	3.5	106
26	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	6.0	91
27	Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): I. Day–night patterns of air concentrations in summer in Zurich, Switzerland. Environmental Pollution, 2012, 169, 196-203.	7.5	62
28	Comparative assessment of the environmental hazards of and exposure to perfluoroalkyl phosphonic and phosphinic acids (PFPAs and PFPiAs): Current knowledge, gaps, challenges and research needs. Environment International, 2016, 89-90, 235-247.	10.0	62
29	We need a global science-policy body on chemicals and waste. Science, 2021, 371, 774-776.	12.6	59
30	Emissions of Polychlorinated Biphenyls, Polychlorinated Dibenzo- <i>p</i> -dioxins, and Polychlorinated Dibenzofurans during 2010 and 2011 in Zurich, Switzerland. Environmental Science & Technology, 2014, 48, 482-490.	10.0	48
31	A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China. Science of the Total Environment, 2021, 786, 147452.	8.0	47
32	Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. Science of the Total Environment, 2020, 739, 139913.	8.0	33
33	Toward a Comprehensive Global Emission Inventory of C ₄ –C ₁₀ Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C ₆ - and C ₁₀ -Based Products. Environmental Science and Technology Letters, 2019. 6. 1-7.	8.7	32
34	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environmental Science & Technology, 2022, 56, 6232-6242.	10.0	32
35	First Steps Toward Sustainable Circular Uses of Chemicals: Advancing the Assessment and Management Paradigm. ACS Sustainable Chemistry and Engineering, 2021, 9, 6939-6951.	6.7	30
36	Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): II. Emission source strength in summer in Zurich, Switzerland. Environmental Pollution, 2012, 169, 204-209.	7.5	29

ZHANYUN WANG

#	Article	IF	CITATIONS
37	The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environmental Science & Technology, 2022, 56, 7448-7466.	10.0	29
38	Emissions of polybrominated diphenyl ethers (PBDEs) in Zurich, Switzerland, determined by a combination of measurements and modeling. Chemosphere, 2014, 116, 15-23.	8.2	25
39	Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environmental Sciences: Processes and Impacts, 2019, 21, 1835-1851.	3.5	25
40	Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. Environmental Science & Technology, 2022, 56, 2936-2949.	10.0	25
41	Correction to "A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?― Environmental Science & Technology, 2018, 52, 3325-3325.	10.0	20
42	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	10.0	17
43	In situ measurement of an emerging persistent, mobile and toxic (PMT) substance - Melamine and related triazines in waters by diffusive gradient in thin-films. Water Research, 2021, 206, 117752.	11.3	17
44	Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use― concept. Environmental Sciences: Processes and Impacts, 2021, 23, 1079-1087.	3.5	16
45	Time to Break the "Lock-In―Impediments to Chemicals Management. Environmental Science & Technology, 2022, 56, 3863-3870.	10.0	12
46	Releases of chlorobenzenes, chlorophenols and dioxins during fireworks. Chemosphere, 2014, 114, 158-164.	8.2	11
47	Time to Reveal Chemical Identities of Polymers and UVCBs. Environmental Science & Technology, 2021, 55, 14473-14476.	10.0	11
48	Broaden chemicals scope in biodiversity targets. Science, 2022, 376, 1280-1280.	12.6	10
49	Comment on "The environmental photolysis of perfluorooctanesulfonate, perfluorooctanoate, and related fluorochemicals― Chemosphere, 2015, 122, 301-303.	8.2	8
50	Developing SAICM into a framework for the international governance of chemicals throughout their lifecycle: Looking beyond 2020. Integrated Environmental Assessment and Management, 2018, 14, 432-433.	2.9	8
51	Impact of fluorotelomer alcohols (FTOH) on the molecular and macroscopic phenotype of Tetrahymena thermophila. Environmental Science and Pollution Research, 2010, 17, 154-164.	5.3	6
52	Comment on "Fluorotechnology Is Critical to Modern Life: The FluoroCouncil Counterpoint to the Madrid Statement― Environmental Health Perspectives, 2015, 123, A170.	6.0	6
53	The hitchhiker's guide to core samples: Key issues and lessons learned. Science of the Total Environment, 2019, 685, 867-885.	8.0	6
54	Response to "Comment on Scientific Basis for Managing PFAS as a Chemical Class― Environmental Science and Technology Letters, 2021, 8, 195-197.	8.7	6

ZHANYUN WANG

#	Article	IF	CITATIONS
55	Development and application of diffusive gradients in thin-films for in situ sampling of the bitterest chemical – denatonium benzoate in waters. Journal of Hazardous Materials, 2021, 418, 126393.	12.4	6
56	To be or not to be degraded: in defense of persistence assessment of chemicals. Environmental Sciences: Processes and Impacts, 2022, 24, 1104-1109.	3.5	6
57	Combined Application of the Essential-Use and Functional Substitution Concepts: Accelerating Safer Alternatives. Environmental Science & Technology, 2022, 56, 9842-9846.	10.0	6
58	Response to Comment on "Outside the Safe Operating Space of the Planetary Boundary for Novel Entities― Environmental Science & Technology, 2022, 56, 6788-6789.	10.0	3
59	Africa: renewables infrastructure avoids stranded assets. Nature, 2021, 595, 353-353.	27.8	0
60	Taking Earth's Pulse with Low-Cost Sensors. ACS Sensors, 2022, 7, 1613-1613.	7.8	0
61	Introducing "Embedded Toxicityâ€: A Necessary Metric for the Sound Management of Building Materials. Environmental Science & Technology, 2022, 56, 9838-9841.	10.0	Ο