
Dmitry I Gabrilovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2353108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myeloid Cell–Derived Oxidized Lipids and Regulation of the Tumor Microenvironment. Cancer Research, 2022, 82, 187-194.	0.9	14
2	ONP-302 Nanoparticles Inhibit Tumor Growth By Altering Tumor-Associated Macrophages And Cancer-Associated Fibroblasts. Journal of Cancer, 2022, 13, 1933-1944.	2.5	6
3	Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunology Research, 2022, 10, 545-557.	3.4	32
4	Entinostat plus Pembrolizumab in Patients with Metastatic NSCLC Previously Treated with Anti–PD-(L)1 Therapy. Clinical Cancer Research, 2021, 27, 1019-1028.	7.0	58
5	Myeloid-Derived Suppressor Cells Are a Major Source of Wnt5A in the Melanoma Microenvironment and Depend on Wnt5A for Full Suppressive Activity. Cancer Research, 2021, 81, 658-670.	0.9	15
6	EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Science Advances, 2021, 7, .	10.3	67
7	Sensitization of ovarian tumor to immune checkpoint blockade by boosting senescence-associated secretory phenotype. IScience, 2021, 24, 102016.	4.1	32
8	Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nature Communications, 2021, 12, 346.	12.8	107
9	Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nature Reviews Immunology, 2021, 21, 485-498.	22.7	755
10	Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. Journal of Experimental Medicine, 2021, 218, .	8.5	123
11	Immune suppressive activity of myeloid-derived suppressor cells in cancer requires inactivation of the type I interferon pathway. Nature Communications, 2021, 12, 1717.	12.8	53
12	Upregulation of C/EBPα Inhibits Suppressive Activity of Myeloid Cells and Potentiates Antitumor Response in Mice and Patients with Cancer. Clinical Cancer Research, 2021, 27, 5961-5978.	7.0	47
13	The Dawn of Myeloid-Derived Suppressor Cells: Identification of Arginase I as the Mechanism of Immune Suppression. Cancer Research, 2021, 81, 3953-3955.	0.9	12
14	Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	41
15	Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discovery, 2021, 11, 2693-2706.	9.4	89
16	Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma. Nature Communications, 2021, 12, 6023.	12.8	21
17	Isolation and Phenotyping of Splenic Myeloid-Derived Suppressor Cells in Murine Cancer Models. Methods in Molecular Biology, 2021, 2236, 19-28.	0.9	4
18	A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Research, 2020, 80, 5270-5281.	0.9	15

#	Article	IF	CITATIONS
19	Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Science Translational Medicine, 2020, 12, .	12.4	107
20	All Myeloid-Derived Suppressor Cells Are Not Created Equal: How Gender Inequality Influences These Cells and Affects Cancer Therapy. Cancer Discovery, 2020, 10, 1100-1102.	9.4	7
21	BTN3A1 governs antitumor responses by coordinating $\hat{I} \pm \hat{I}^2$ and $\hat{I}^3 \hat{I}' T$ cells. Science, 2020, 369, 942-949.	12.6	83
22	Activation of p38α stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nature Cancer, 2020, 1, 603-619.	13.2	33
23	Detecting Prostate Cancer Using Pattern Recognition Neural Networks With Flow Cytometry-Based Immunophenotyping in At-Risk Men. Biomarker Insights, 2020, 15, 117727192091332.	2.5	5
24	Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2. Cancer Discovery, 2020, 10, 1282-1295.	9.4	75
25	Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 2020, 16, 278-290.	8.0	299
26	Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunology, Immunotherapy, 2020, 69, 1929-1936.	4.2	39
27	Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Reports, 2020, 33, 108571.	6.4	99
28	PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma. JCI Insight, 2020, 5, .	5.0	44
29	Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight, 2020, 5, .	5.0	72
30	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	8.2	26
31	HDAC6 Inhibition Synergizes with Anti-PD-L1 Therapy in ARID1A-Inactivated Ovarian Cancer. Cancer Research, 2019, 79, 5482-5489.	0.9	86
32	MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Research, 2019, 79, 6215-6226.	0.9	34
33	Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. Journal of Experimental Medicine, 2019, 216, 2150-2169.	8.5	85
34	Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. Molecular and Cellular Biology, 2019, 39, .	2.3	31
35	Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. Journal of Biological Chemistry, 2019, 294, 10407-10414.	3.4	25
36	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	27.8	440

#	Article	IF	CITATIONS
37	Transcriptional factor ATF3 protects against colitis by regulating follicular helper T cells in Peyer's patches. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6286-6291.	7.1	30
38	"Redox lipidomics technology: Looking for a needle in a haystack― Chemistry and Physics of Lipids, 2019, 221, 93-107.	3.2	35
39	BRAF Targeting Sensitizes Resistant Melanoma to Cytotoxic T Cells. Clinical Cancer Research, 2019, 25, 2783-2794.	7.0	25
40	Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad.p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunology, Immunotherapy, 2019, 68, 517-527.	4.2	39
41	The Ratio of Peripheral Regulatory T Cells to Lox-1 ⁺ Polymorphonuclear Myeloid-derived Suppressor Cells Predicts the Early Response to Anti–PD-1 Therapy in Patients with Non–Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 243-246.	5.6	85
42	Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. Journal of Clinical Investigation, 2019, 129, 4261-4275.	8.2	59
43	Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization. Journal of Cell Biology, 2018, 217, 1739-1755.	5.2	46
44	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	30.7	3,421
45	Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice. Cancer Immunology Research, 2018, 6, 696-710.	3.4	21
46	Myeloid-derived suppressor cells coming of age. Nature Immunology, 2018, 19, 108-119.	14.5	1,285
47	Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Seminars in Immunology, 2018, 35, 19-28.	5.6	230
48	Biology of Myeloid-Derived Suppressor Cells. , 2018, , 181-197.		2
49	Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nature Medicine, 2018, 24, 224-231.	30.7	150
50	Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 2018, 51, 76-82.	5.5	281
51	"Only a Life Lived for Others Is Worth Living†Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxidants and Redox Signaling, 2018, 29, 1333-1358.	5.4	33
52	CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients. JCI Insight, 2018, 3, .	5.0	56
53	Unique pattern of neutrophil migration and function during tumor progression. Nature Immunology, 2018, 19, 1236-1247.	14.5	140
54	ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence andÂRepopulation of Hematopoietic Stem Cells. Stem Cell Reports, 2018, 11, 258-273.	4.8	32

#	Article	IF	CITATIONS
55	ICAM-1 controls development and function of ILC2. Journal of Experimental Medicine, 2018, 215, 2157-2174.	8.5	62
56	Inhibition of Casein Kinase 2 Disrupts Differentiation of Myeloid Cells in Cancer and Enhances the Efficacy of Immunotherapy in Mice. Cancer Research, 2018, 78, 5644-5655.	0.9	40
57	Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clinical Cancer Research, 2018, 24, 5347-5356.	7.0	253
58	Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Research, 2018, 78, 4215-4228.	0.9	47
59	ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. Journal of Clinical Investigation, 2018, 128, 5095-5109.	8.2	102
60	Dendritic cells in cancer: the role revisited. Current Opinion in Immunology, 2017, 45, 43-51.	5.5	339
61	Editorial overview: Many shades of grey: how immune response is regulated by tumors. Current Opinion in Immunology, 2017, 45, ix-xi.	5.5	0
62	Myeloid-Derived Suppressor Cells. Cancer Immunology Research, 2017, 5, 3-8.	3.4	1,345
63	Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clinical Cancer Research, 2017, 23, 2942-2950.	7.0	137
64	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	12.8	196
65	Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.	16.8	457
66	Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clinical Cancer Research, 2017, 23, 5187-5201.	7.0	288
67	Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA 408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. OncoTargets and Therapy, 2017, Volume 10, 4239-4250.	2.0	36
68	Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 2017, 127, 3755-3769.	8.2	37
69	A Bayesian pick-the-winner design in a randomized phase II clinical trial. Oncotarget, 2017, 8, 88376-88385.	1.8	6
70	A neuronal network of mitochondrial dynamics regulates metastasis. Nature Communications, 2016, 7, 13730.	12.8	112
71	Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Science Immunology, 2016, 1, .	11.9	560
72	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	12.8	2,076

#	Article	IF	CITATIONS
73	CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity, 2016, 44, 303-315.	14.3	299
74	The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 2016, 37, 208-220.	6.8	1,507
75	Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Letters, 2016, 371, 117-124.	7.2	59
76	β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget, 2016, 7, 52618-52630.	1.8	6
77	GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood, 2015, 126, 1621-1628.	1.4	104
78	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. OncoImmunology, 2015, 4, e998538.	4.6	119
79	Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17–producing CD4+ T cells. Journal of Experimental Medicine, 2015, 212, 351-367.	8.5	65
80	Fatal attraction: How macrophages participate in tumor metastases. Journal of Experimental Medicine, 2015, 212, 976-976.	8.5	3
81	ROR1C Regulates Differentiation of Myeloid-Derived Suppressor Cells. Cancer Cell, 2015, 28, 147-149.	16.8	20
82	Transcriptional regulation of myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2015, 98, 913-922.	3.3	276
83	Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells. Annual Review of Medicine, 2015, 66, 97-110.	12.2	406
84	Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 2015, 63, 579-585.	2.2	98
85	Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. Journal of Clinical Investigation, 2015, 125, 3356-3364.	8.2	846
86	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
87	Tumor-Induced STAT3 Signaling in Myeloid Cells Impairs Dendritic Cell Generation by Decreasing PKCβII Abundance. Science Signaling, 2014, 7, ra16.	3.6	45
88	Oxidized Lipids Block Antigen Cross-Presentation by Dendritic Cells in Cancer. Journal of Immunology, 2014, 192, 2920-2931.	0.8	203
89	Myeloid-Derived Suppressor Cells in the Development of Lung Cancer. Cancer Immunology Research, 2014, 2, 50-58.	3.4	95
90	COX-1–derived thromboxane A2 plays an essential role in early B-cell development via regulation of JAK/STAT5 signaling in mouse. Blood, 2014, 124, 1610-1621.	1.4	18

#	Article	IF	CITATIONS
91	Effects of Notch Signaling on Regulation of Myeloid Cell Differentiation in Cancer. Cancer Research, 2014, 74, 141-152.	0.9	80
92	Editorial: The intricacy of choice: can bacteria decide what type of myeloid cells to stimulate?. Journal of Leukocyte Biology, 2014, 96, 671-674.	3.3	6
93	Regulation of plasmacytoid dendritic cell development in mice by aryl hydrocarbon receptor. Immunology and Cell Biology, 2014, 92, 200-203.	2.3	16
94	Hypoxiaâ€inducible factors in regulation of immune responses in tumour microenvironment. Immunology, 2014, 143, 512-519.	4.4	270
95	Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: Mass spectrometry and coarse-grained simulations. Free Radical Biology and Medicine, 2014, 76, 53-60.	2.9	26
96	Can the Suppressive Activity of Myeloid-Derived Suppressor Cells Be "Chopâ€ped?. Immunity, 2014, 41, 341-342.	14.3	10
97	Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice. Cancer Immunology, Immunotherapy, 2014, 63, 1009-1021.	4.2	40
98	ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis. Journal of Clinical Investigation, 2014, 124, 2626-2639.	8.2	286
99	A Novel Agent Tasquinimod Demonstrates a Potent Anti-Tumor Activity in Pre-Clinical Models of Multiple Myeloma. Blood, 2014, 124, 5729-5729.	1.4	3
100	Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunology, Immunotherapy, 2013, 62, 405-410.	4.2	81
101	Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunology, Immunotherapy, 2013, 62, 909-918.	4.2	268
102	Myeloid-Derived Suppressor Cells Regulate Growth of Multiple Myeloma by Inhibiting T Cells in Bone Marrow. Journal of Immunology, 2013, 190, 3815-3823.	0.8	176
103	Reciprocal Relationship between Myeloid-Derived Suppressor Cells and T Cells. Journal of Immunology, 2013, 191, 17-23.	0.8	156
104	History of myeloid-derived suppressor cells. Nature Reviews Cancer, 2013, 13, 739-752.	28.4	974
105	Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 2013, 14, 211-220.	14.5	306
106	Dynamic Change and Impact of Myeloid-Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice. Biology of Blood and Marrow Transplantation, 2013, 19, 692-702.	2.0	61
107	Applying Pressure on Macrophages. Immunity, 2013, 38, 205-206.	14.3	2
108	Regulation of Dendritic Cell Differentiation in Bone Marrow during Emergency Myelopoiesis. Journal of Immunology, 2013, 191, 1916-1926.	0.8	16

#	Article	IF	CITATIONS
109	The role of mannose-6-phosphate receptor and autophagy in influencing the outcome of combination therapy. Autophagy, 2013, 9, 615-616.	9.1	11
110	New roles of Rb1 in expansion of MDSCs in cancer. Cell Cycle, 2013, 12, 1329-1330.	2.6	10
111	Induction of myelodysplasia by myeloid-derived suppressor cells. Journal of Clinical Investigation, 2013, 123, 4595-4611.	8.2	254
112	Molecular Pathways: Tumor-Infiltrating Myeloid Cells and Reactive Oxygen Species in Regulation of Tumor Microenvironment. Clinical Cancer Research, 2012, 18, 4877-4882.	7.0	107
113	Cellular immunotherapy for soft tissue sarcomas. Immunotherapy, 2012, 4, 283-290.	2.0	14
114	Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy. Immunotherapy, 2012, 4, 373-382.	2.0	33
115	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	22.7	3,002
116	Autophagy Induced by Conventional Chemotherapy Mediates Tumor Cell Sensitivity to Immunotherapy. Cancer Research, 2012, 72, 5483-5493.	0.9	81
117	Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients. International Journal of Radiation Oncology Biology Physics, 2012, 82, 924-932.	0.8	109
118	Recent Advances in Immunotherapy of Lung Cancer. Journal of Lung Cancer, 2012, 11, 1.	0.2	1
119	Antigen-Specific CD4+ T Cells Regulate Function of Myeloid-Derived Suppressor Cells in Cancer via Retrograde MHC Class II Signaling. Cancer Research, 2012, 72, 928-938.	0.9	96
120	Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunology, Immunotherapy, 2012, 61, 573-579.	4.2	25
121	Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells. Seminars in Cancer Biology, 2012, 22, 282-288.	9.6	65
122	Novel Role of Histone Deacetylase 11 (HDAC11) in Hematopoiesis. Blood, 2012, 120, 4728-4728.	1.4	0
123	Accumulation of Myeloid-Derived Suppressor Cells in Bone Marrow in Multiple Myeloma Induces Tumor-Specific Immune Suppression and Promotes Tumor Growth. Blood, 2012, 120, 3954-3954.	1.4	0
124	Dynamic Changes and Impact of Myeloid Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice Blood, 2012, 120, 2999-2999.	1.4	0
125	Mass-spectrometric characterization of peroxidized and hydrolyzed lipids in plasma and dendritic cells of tumor-bearing animals. Biochemical and Biophysical Research Communications, 2011, 413, 149-153.	2.1	15
126	Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in Immunology, 2011, 32, 19-25.	6.8	709

#	Article	IF	CITATIONS
127	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	22.7	95
128	Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Laboratory Investigation, 2011, 91, 598-608.	3.7	111
129	Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer. Cancer Immunology, Immunotherapy, 2011, 60, 419-423.	4.2	56
130	Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Journal of Leukocyte Biology, 2011, 91, 167-181.	3.3	457
131	Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. Journal of Clinical Investigation, 2011, 121, 4015-4029.	8.2	298
132	Microenvironment Induced Myelodysplastic Syndrome (MDS) in S100A9 Transgenic Mice Caused by Myeloid-Derived Suppressor Cells (MDSC). Blood, 2011, 118, 788-788.	1.4	6
133	Myeloid-Derived Suppressor Cells in Human Cancer. Cancer Journal (Sudbury, Mass), 2010, 16, 348-353.	2.0	203
134	Changes in Dendritic Cell Phenotype After a New High-dose Weekly Schedule of Interleukin-2 Therapy for Kidney Cancer and Melanoma. Journal of Immunotherapy, 2010, 33, 817-827.	2.4	40
135	INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opinion on Biological Therapy, 2010, 10, 983-991.	3.1	107
136	The biology of myeloidâ€derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 2010, 40, 2969-2975.	2.9	497
137	Lipid accumulation and dendritic cell dysfunction in cancer. Nature Medicine, 2010, 16, 880-886.	30.7	539
138	Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunological Reviews, 2010, 234, 105-119.	6.0	52
139	Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. Journal of Clinical Investigation, 2010, 120, 1111-1124.	8.2	406
140	HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine, 2010, 207, 2439-2453.	8.5	966
141	Mechanism of T Cell Tolerance Induced by Myeloid-Derived Suppressor Cells. Journal of Immunology, 2010, 184, 3106-3116.	0.8	342
142	Anti-inflammatory Triterpenoid Blocks Immune Suppressive Function of MDSCs and Improves Immune Response in Cancer. Clinical Cancer Research, 2010, 16, 1812-1823.	7.0	252
143	Combined Inhibition of Notch Signaling and Bcl-2/Bcl-xL Results in Synergistic Antimyeloma Effect. Molecular Cancer Therapeutics, 2010, 9, 3200-3209.	4.1	40
144	Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009, 9, 162-174.	22.7	5,655

#	Article	IF	CITATIONS
145	Notch and Wingless Signaling Cooperate in Regulation of Dendritic Cell Differentiation. Immunity, 2009, 30, 845-859.	14.3	95
146	Mechanism Regulating Reactive Oxygen Species in Tumor-Induced Myeloid-Derived Suppressor Cells. Journal of Immunology, 2009, 182, 5693-5701.	0.8	655
147	Myeloid-Derived Suppressor Cells (MDSC) Are Effectors of Bone Marrow Suppression in Lower Risk Myelodysplastic Syndromes (MDS) Blood, 2009, 114, 597-597.	1.4	6
148	Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunology, Immunotherapy, 2008, 57, 1523-1529.	4.2	67
149	Notch signaling in differentiation and function of dendritic cells. Immunologic Research, 2008, 41, 1-14.	2.9	44
150	Mechanisms and clinical prospects of Notch inhibitors in the therapy of hematological malignancies. Drug Resistance Updates, 2008, 11, 210-218.	14.4	27
151	Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. Journal of Experimental Medicine, 2008, 205, 2235-2249.	8.5	796
152	Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Journal of Immunology, 2008, 181, 5791-5802.	0.8	1,447
153	Phenotypic and Functional Analysis of Dendritic Cells and Clinical Outcome in Patients With High-Risk Melanoma Treated With Adjuvant Granulocyte Macrophage Colony-Stimulating Factor. Journal of Clinical Oncology, 2008, 26, 3235-3241.	1.6	178
154	Tumor Escape Mechanism Governed by Myeloid-Derived Suppressor Cells. Cancer Research, 2008, 68, 2561-2563.	0.9	292
155	Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood, 2008, 111, 2220-2229.	1.4	171
156	Significant Expansion of Myeloid Derived Suppressor Cells in Patients with High- Risk Breast Cancer Treated with Dose Dense Adjuvant Chemotherapy. Blood, 2008, 112, 4653-4653.	1.4	0
157	The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 425-425.	0.9	649
158	Targeting of Jak/STAT Pathway in Antigen Presenting Cells in Cancer. Current Cancer Drug Targets, 2007, 7, 71-77.	1.6	48
159	Vascular Endothelial Growth Factor-Trap Overcomes Defects in Dendritic Cell Differentiation but Does Not Improve Antigen-Specific Immune Responses. Clinical Cancer Research, 2007, 13, 4840-4848.	7.0	171
160	Mechanism of All- <i>Trans</i> Retinoic Acid Effect on Tumor-Associated Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 11021-11028.	0.9	367
161	Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood, 2007, 109, 507-515.	1.4	78
162	M17-02: Immunotherapy of extensive stage small cell lung cancer with dendritic cell based p53 vaccine. Journal of Thoracic Oncology, 2007, 2, S198-S199.	1.1	0

#	Article	IF	CITATIONS
163	Comment on "Cutting Edge: Induction of B7-H4 on APCs through IL-10: Novel Suppressive Mode for Regulatory T Cells― Journal of Immunology, 2007, 178, 4705.2-4706.	0.8	6
164	MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 2007, 204, 1463-1474.	8.5	581
165	Combination of chemotherapy and immunotherapy for cancer: a paradigm revisited. Lancet Oncology, The, 2007, 8, 2-3.	10.7	69
166	Immunosuppressive Strategies that are Mediated by Tumor Cells. Annual Review of Immunology, 2007, 25, 267-296.	21.8	1,466
167	Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 2007, 13, 828-835.	30.7	1,000
168	Molecular mechanisms and therapeutic reversal of immune suppression in cancer. Current Cancer Drug Targets, 2007, 7, 1.	1.6	18
169	INGN 201 (Advexin®): adenoviral p53 gene therapy for cancer. Expert Opinion on Biological Therapy, 2006, 6, 823-832.	3.1	56
170	Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer and Metastasis Reviews, 2006, 25, 323-331.	5.9	170
171	Role Of Immature Myeloid Cells in Mechanisms of Immune Evasion In Cancer. Cancer Immunology, Immunotherapy, 2006, 55, 237-245.	4.2	323
172	Combination of p53 Cancer Vaccine with Chemotherapy in Patients with Extensive Stage Small Cell Lung Cancer. Clinical Cancer Research, 2006, 12, 878-887.	7.0	397
173	All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients. Cancer Research, 2006, 66, 9299-9307.	0.9	506
174	A New Target in Multiple Myeloma: Inhibition of Notch Pathway Induces Apoptosis and Enhances Drug Sensitivity of Myeloma Cells In Vitro and In Vivo Blood, 2006, 108, 841-841.	1.4	0
175	Developing dendritic cells become 'lacy' cells packed with fat and glycogen. Immunology, 2005, 115, 473-483.	4.4	42
176	Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7, 457-468.	16.8	311
177	Activation of Dendritic Cells via Inhibition of Jak2/STAT3 Signaling. Journal of Immunology, 2005, 175, 4338-4346.	0.8	189
178	Regulation of Dendritic Cell Differentiation and Antitumor Immune Response in Cancer by Pharmacologic-Selective Inhibition of the Janus-Activated Kinase 2/Signal Transducers and Activators of Transcription 3 Pathway. Cancer Research, 2005, 65, 9525-9535.	0.9	273
179	Tumor-Associated CD8+ T Cell Tolerance Induced by Bone Marrow-Derived Immature Myeloid Cells. Journal of Immunology, 2005, 175, 4583-4592.	0.8	297
180	STAT1 Signaling Regulates Tumor-Associated Macrophage-Mediated T Cell Deletion. Journal of Immunology, 2005, 174, 4880-4891.	0.8	390

#	Article	IF	CITATIONS
181	Hyperactivation of STAT3 Is Involved in Abnormal Differentiation of Dendritic Cells in Cancer. Journal of Immunology, 2004, 172, 464-474.	0.8	418
182	Antigen-Specific Inhibition of CD8+ T Cell Response by Immature Myeloid Cells in Cancer Is Mediated by Reactive Oxygen Species. Journal of Immunology, 2004, 172, 989-999.	0.8	742
183	Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood, 2004, 103, 3503-3510.	1.4	251
184	Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Medicine, 2004, 10, 48-54.	30.7	1,029
185	Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews Immunology, 2004, 4, 941-952.	22.7	920
186	Immune Tolerance in Breast Cancer. Breast Disease, 2004, 20, 93-103.	0.8	16
187	Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. Journal of Leukocyte Biology, 2003, 74, 186-196.	3.3	242
188	Tumor Escape from Immune Response: Mechanisms and Targets of Activity. Current Drug Targets, 2003, 4, 525-536.	2.1	67
189	VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood, 2003, 101, 4878-4886.	1.4	465
190	Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood, 2003, 102, 3980-3988.	1.4	85
191	Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clinical Cancer Research, 2003, 9, 285-94.	7.0	83
192	Development of vaccines against self-antigens: the p53 paradigm. Current Opinion in Drug Discovery & Development, 2003, 6, 169-73.	1.9	5
193	All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Research, 2003, 63, 4441-9.	0.9	350
194	Full-length dominant-negative survivin for cancer immunotherapy. Clinical Cancer Research, 2003, 9, 6523-33.	7.0	78
195	Immature myeloid cells and cancer-associated immune suppression. Cancer Immunology, Immunotherapy, 2002, 51, 293-298.	4.2	289
196	H1(0) histone and differentiation of dendritic cells. A molecular target for tumor-derived factors. Journal of Leukocyte Biology, 2002, 72, 285-96.	3.3	38
197	Dendritic cell vaccines for cancer treatment. Current Opinion in Molecular Therapeutics, 2002, 4, 452-8.	2.8	23
198	Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34+ progenitor cells. Human Immunology, 2001, 62, 332-341.	2.4	78

#	Article	IF	CITATIONS
199	Increased Production of Immature Myeloid Cells in Cancer Patients: A Mechanism of Immunosuppression in Cancer. Journal of Immunology, 2001, 166, 678-689.	0.8	1,214
200	Combination of ?-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: Approach to treatment of advanced stage cancer. International Journal of Cancer, 2001, 94, 825-833.	5.1	128
201	Mechanism of Immune Dysfunction in Cancer Mediated by Immature Gr-1+ Myeloid Cells. Journal of Immunology, 2001, 166, 5398-5406.	0.8	500
202	Notch-1 Regulates NF-κB Activity in Hemopoietic Progenitor Cells. Journal of Immunology, 2001, 167, 4458-4467.	0.8	207
203	Induction of Potent Human Immunodeficiency Virus Type 1-Specific T-Cell-Restricted Immunity by Genetically Modified Dendritic Cells. Journal of Virology, 2001, 75, 7621-7628.	3.4	60
204	Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clinical and Experimental Metastasis, 1999, 17, 881-888.	3.3	43
205	Vascular Endothelial Growth Factor Inhibits the Development of Dendritic Cells and Dramatically Affects the Differentiation of Multiple Hematopoietic Lineages In Vivo. Blood, 1998, 92, 4150-4166.	1.4	875
206	Genetic Immunotherapy of Established Tumors with Adenovirus-Murine Granulocyte-Macrophage Colony-Stimulating Factor. Human Gene Therapy, 1997, 8, 187-193.	2.7	78
207	Dendritic Cells in Antitumor Immune Responses. Cellular Immunology, 1996, 170, 101-110.	3.0	230
208	Dendritic Cells in Antitumor Immune Responses. Cellular Immunology, 1996, 170, 111-119.	3.0	199
209	Structural and functional analysis of \hat{I}^22 microglobulin abnormalities in human lung and breast cancer. , 1996, 67, 756-763.		57
210	A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nature Genetics, 1996, 13, 210-213.	21.4	186
211	Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 1996, 2, 1096-1103.	30.7	1,721
212	Murine Retrovirus Induces Defects in the Function of Dendritic Cells at Early Stages of Infection. Cellular Immunology, 1994, 158, 167-181.	3.0	23
213	Clinical Significance of Neutrophil Functional Activity in HIV Infection. Scandinavian Journal of Infectious Diseases, 1994, 26, 41-47.	1.5	25
214	Effects of murine leukemia viruses on the function of dendritic cells. European Journal of Immunology, 1993, 23, 2932-2938.	2.9	11
215	Mechanisms regulating transitory suppressive activity of neutrophils in newborns: PMNsâ€MDSCs in newborns. Journal of Leukocyte Biology, 0, , .	3.3	1