
Nadir Erbilgin

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/2352697/publications.pdf

Version: 2024-02-01

117

papers

3,675

citations

35

h-index

109321

53

g-index

168389

119

all docs

119

docs citations

119

times ranked

2757

citing authors



Nadir Erbilgin

2

# Article IF Citations

1 Soil inoculation of lodgepole pine seedlings alters rootâ€•associated fungal communities but does not
improve seedling performance in beetleâ€•killed pine stands. Restoration Ecology, 2023, 31, . 2.9 4

2 Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
Microbial Ecology, 2022, 84, 834-843. 2.8 4

3 Integrating genomic information and productivity and climate-adaptability traits into a regional white
spruce breeding program. PLoS ONE, 2022, 17, e0264549. 2.5 7

4 Soil transfers from intact to disturbed boreal forests neither alter ectomycorrhizal fungal
communities nor improve pine seedling performance. Journal of Applied Ecology, 2022, 59, 2430-2439. 4.0 3

5 Changes in soil fungal community composition depend on functional group and forest disturbance
type. New Phytologist, 2021, 229, 1105-1117. 7.3 50

6 Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree
Volatiles as Nutrient Sources. Microbial Ecology, 2021, 81, 1106-1110. 2.8 2

7
Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the
biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada.
Applied Microbiology and Biotechnology, 2021, 105, 2541-2557.

3.6 12

8 Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not
with Latitude. Journal of Chemical Ecology, 2021, 47, 280-293. 1.8 10

9 Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand
biogeochemistry. Mycorrhiza, 2021, 31, 313-324. 2.8 13

10
Production of complementary defense metabolites reflects a coâ€•evolutionary arms race between a
host plant and a mutualistic bark beetleâ€•fungal complex. Plant, Cell and Environment, 2021, 44,
3064-3077.

5.7 13

11 Longâ€•term nitrogen addition does not sustain host tree stem radial growth but doubles the
abundance of highâ€•biomass ectomycorrhizal fungi. Global Change Biology, 2021, 27, 4125-4138. 9.5 23

12 Combined drought and bark beetle attacks deplete nonâ€•structural carbohydrates and promote death
of mature pine trees. Plant, Cell and Environment, 2021, 44, 3866-3881. 5.7 16

13 An invasive grass and litter impact tree encroachment into a native grassland. Applied Vegetation
Science, 2021, 24, e12618. 1.9 1
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49 Prescribed fire does not promote outbreaks of a primary bark beetle at lowâ€•density populations.
Journal of Applied Ecology, 2016, 53, 222-232. 4.0 12

50 Community-level determinants of smooth brome (Bromus inermis) growth and survival in the aspen
parkland. Plant Ecology, 2016, 217, 1395-1413. 1.6 11

51 Using structural sustainability for forest health monitoring and triage: Case study of a mountain
pine beetle ( Dendroctonus ponderosae )-impacted landscape. Ecological Indicators, 2016, 70, 451-459. 6.3 7

52 Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and
resource-sharing wood-boring beetles depends on plant parasite infection. Oecologia, 2016, 182, 1-12. 2.0 26

53 Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by
the Invasive Mountain Pine Beetle and Its Symbiotic Fungus. PLoS ONE, 2016, 11, e0162046. 2.5 17
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56 Fire-mediated interactions between a tree-killing bark beetle and its competitors. Forest Ecology and
Management, 2015, 356, 262-272. 3.2 3
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