
Nadir Erbilgin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352697/publications.pdf Version: 2024-02-01

NADID FORILCIN

#	Article	IF	CITATIONS
1	Soil inoculation of lodgepole pine seedlings alters rootâ€associated fungal communities but does not improve seedling performance in beetleâ€killed pine stands. Restoration Ecology, 2023, 31, .	2.9	4
2	Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi. Microbial Ecology, 2022, 84, 834-843.	2.8	4
3	Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program. PLoS ONE, 2022, 17, e0264549.	2.5	7
4	Soil transfers from intact to disturbed boreal forests neither alter ectomycorrhizal fungal communities nor improve pine seedling performance. Journal of Applied Ecology, 2022, 59, 2430-2439.	4.0	3
5	Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytologist, 2021, 229, 1105-1117.	7.3	50
6	Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources. Microbial Ecology, 2021, 81, 1106-1110.	2.8	2
7	Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Applied Microbiology and Biotechnology, 2021, 105, 2541-2557.	3.6	12
8	Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not with Latitude. Journal of Chemical Ecology, 2021, 47, 280-293.	1.8	10
9	Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza, 2021, 31, 313-324.	2.8	13
10	Production of complementary defense metabolites reflects a coâ€evolutionary arms race between a host plant and a mutualistic bark beetleâ€fungal complex. Plant, Cell and Environment, 2021, 44, 3064-3077.	5.7	13
11	Longâ€ŧerm nitrogen addition does not sustain host tree stem radial growth but doubles the abundance of highâ€biomass ectomycorrhizal fungi. Global Change Biology, 2021, 27, 4125-4138.	9.5	23
12	Combined drought and bark beetle attacks deplete nonâ€structural carbohydrates and promote death of mature pine trees. Plant, Cell and Environment, 2021, 44, 3866-3881.	5.7	16
13	An invasive grass and litter impact tree encroachment into a native grassland. Applied Vegetation Science, 2021, 24, e12618.	1.9	1
14	Spatial variation in soil available water holding capacity alters carbon mobilization and allocation to chemical defenses along jack pine stems. Environmental and Experimental Botany, 2020, 171, 103902.	4.2	17
15	Chemical similarity between introduced and native populations of Scots pine can facilitate transcontinental expansion of mountain pine beetle in North America. Biological Invasions, 2020, 22, 1067-1083.	2.4	1
16	Exposure to Fungal Volatiles Can Influence Volatile Emissions From Other Ophiostomatoid Fungi. Frontiers in Microbiology, 2020, 11, 567462.	3.5	8
17	Mechanisms and consequences of flight polyphenisms in an outbreaking bark beetle species. Journal of Experimental Biology, 2020, 223, .	1.7	4
18	Density-dependent responses of mountain pine beetle to its pheromones and host volatiles in naÃ ⁻ ve lodgepole pine stands. Forest Ecology and Management, 2020, 472, 118257.	3.2	4

#	Article	IF	CITATIONS
19	Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 2020, 40, 1313-1326.	3.1	43
20	Nitrogen and Ergosterol Concentrations Varied in Live Jack Pine Phloem Following Inoculations With Fungal Associates of Mountain Pine Beetle. Frontiers in Microbiology, 2020, 11, 1703.	3.5	10
21	Induced Defenses of a Novel Host Tree Affect the Growth and Interactions of Bark Beetle-Vectored Fungi. Microbial Ecology, 2020, 80, 181-190.	2.8	8
22	Changes in soil fungal communities following anthropogenic disturbance are linked to decreased lodgepole pine seedling performance. Journal of Applied Ecology, 2020, 57, 1292-1302.	4.0	6
23	Increment Coring Induced Traumatic Resin Ducts in White Spruce But Not in Lodgepole Pine. Tree-Ring Research, 2020, 76, 54.	0.6	4
24	Spatial characteristics of volatile communication in lodgepole pine trees: Evidence of kin recognition and intra-species support. Science of the Total Environment, 2019, 692, 127-135.	8.0	15
25	Soil Available Water Holding Capacity Can Alter the Reproductive Performance of Mountain Pine Beetle (Coleoptera: Curculionidae) in Jack Pine (Pinales: Pinaceae) Through Phloem Nitrogen Concentration. Environmental Entomology, 2019, 48, 945-952.	1.4	1
26	Short- and long-term cold storage of jack pine bolts is associated with higher concentrations of monoterpenes and nutrients. Canadian Journal of Forest Research, 2019, 49, 305-308.	1.7	3
27	Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species. Tree Physiology, 2019, 39, 1121-1135.	3.1	15
28	Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecology, 2019, 39, 285-295.	1.6	28
29	Mountain pine beetle outbreak enhanced resin duct-defenses of lodgepole pine trees. Forest Ecology and Management, 2019, 441, 271-279.	3.2	7
30	Larger Resin Ducts Are Linked to the Survival of Lodgepole Pine Trees During Mountain Pine Beetle Outbreak. Frontiers in Plant Science, 2019, 10, 1459.	3.6	32
31	Phytochemicals as mediators for host range expansion of a native invasive forest insect herbivore. New Phytologist, 2019, 221, 1268-1278.	7.3	51
32	Anatomical defences against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defences within trees. Plant, Cell and Environment, 2019, 42, 633-646.	5.7	27
33	Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves. Journal of Chemical Ecology, 2018, 44, 209-214.	1.8	26
34	Root condensed tannins vary over time, but are unrelated to leaf tannins. AoB PLANTS, 2018, 10, ply044.	2.3	12
35	Ectomycorrhizal fungal species differentially affect the induced defensive chemistry of lodgepole pine. Oecologia, 2018, 188, 395-404.	2.0	11
36	Dwarf mistletoe infection in jack pine alters growth–defense relationships. Tree Physiology, 2018, 38, 1538-1547.	3.1	15

#	Article	IF	CITATIONS
37	Hylobius abietisL. feeding on the novel hostPinus brutiaTen. increases emission of volatile organic compounds. Journal of Applied Entomology, 2017, 141, 133-140.	1.8	9
38	Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks. Oecologia, 2017, 184, 469-478.	2.0	46
39	A Native Parasitic Plant Systemically Induces Resistance in Jack Pine to a Fungal Symbiont of Invasive Mountain Pine Beetle. Journal of Chemical Ecology, 2017, 43, 506-518.	1.8	7
40	Defence syndromes in lodgepole – whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant, Cell and Environment, 2017, 40, 1791-1806.	5.7	61
41	A Blend of Ethanol and (â^')-α-Pinene were Highly Attractive to Native Siricid Woodwasps (Siricidae,) Tj ETQq1 1 Ecology, 2017, 43, 172-179.	0.78431 1.8	4 rgBT /Over 11
42	Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle. Tree Physiology, 2017, 37, 338-350.	3.1	35
43	Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi. Tree Physiology, 2017, 37, 1597-1610.	3.1	27
44	Trap trees: an effective method for monitoring mountain pine beetle activities in novel habitats. Canadian Journal of Forest Research, 2017, 47, 1432-1437.	1.7	9
45	No silver bullet: different soil handling techniques are useful for different research questions, exhibit differential type I and II error rates, and are sensitive to sampling intensity. New Phytologist, 2017, 216, 11-14.	7.3	48
46	Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytologist, 2017, 213, 864-873.	7.3	45
47	Drought stress leads to systemic induced susceptibility to a nectrotrophic fungus associated with mountain pine beetle in Pinus banksiana seedlings. PLoS ONE, 2017, 12, e0189203.	2.5	16
48	The Effect of Water Limitation on Volatile Emission, Tree Defense Response, and Brood Success of Dendroctonus ponderosae in Two Pine Hosts, Lodgepole, and Jack Pine. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	26
49	Prescribed fire does not promote outbreaks of a primary bark beetle at lowâ€density populations. Journal of Applied Ecology, 2016, 53, 222-232.	4.0	12
50	Community-level determinants of smooth brome (Bromus inermis) growth and survival in the aspen parkland. Plant Ecology, 2016, 217, 1395-1413.	1.6	11
51	Using structural sustainability for forest health monitoring and triage: Case study of a mountain pine beetle (Dendroctonus ponderosae)-impacted landscape. Ecological Indicators, 2016, 70, 451-459.	6.3	7
52	Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection. Oecologia, 2016, 182, 1-12.	2.0	26
53	Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus. PLoS ONE, 2016, 11, e0162046.	2.5	17
54	Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts. PLoS ONE, 2016, 11, e0162197.	2.5	59

#	Article	IF	CITATIONS
55	Evidence for divergence in cuticular hydrocarbon sex pheromone between California and Mississippi (United States of America) populations of bark beetle parasitoid <i>Roptrocerus xylophagorum</i> (Hymenoptera: Pteromalidae). Canadian Entomologist, 2015, 147, 472-475.	0.8	2
56	Fire-mediated interactions between a tree-killing bark beetle and its competitors. Forest Ecology and Management, 2015, 356, 262-272.	3.2	3
57	Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings. New Phytologist, 2015, 208, 904-914.	7.3	50
58	Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests. PLoS ONE, 2015, 10, e0124691.	2.5	48
59	Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle. Frontiers in Plant Science, 2015, 6, 342.	3.6	44
60	Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its NaÃ ⁻ ve Host. Journal of Chemical Ecology, 2015, 41, 540-549.	1.8	26
61	Too much of a good thing: landscape-scale facilitation eventually turns into competition between a lepidopteran defoliator and a bark beetle. Landscape Ecology, 2015, 30, 301-312.	4.2	6
62	Influence of bark beetle outbreaks on nutrient cycling in native pine stands in western Canada. Plant and Soil, 2015, 390, 29-47.	3.7	31
63	Mountain pine beetle (<i>Dendroctonus ponderosae</i>) can produce its aggregation pheromone and complete brood development in naÃ ⁻ ve red pine (<i>Pinus resinosa</i>) under laboratory conditions. Canadian Journal of Forest Research, 2015, 45, 1873-1877.	1.7	17
64	Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia, 2015, 179, 467-485.	2.0	39
65	Competitors and natural enemies may cumulatively mediate Dendroctonus ponderosae colonization of burned Pinus forests. Forest Ecology and Management, 2015, 337, 98-109.	3.2	8
66	Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. Ecology, 2014, 95, 1096-1103.	3.2	60
67	Reserves Accumulated in Non-Photosynthetic Organs during the Previous Growing Season Drive Plant Defenses and Growth in Aspen in the Subsequent Growing Season. Journal of Chemical Ecology, 2014, 40, 21-30.	1.8	24
68	Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naà ve host ecosystem. New Phytologist, 2014, 201, 940-950.	7.3	115
69	Microhabitat Use in a Northern Peripheral Population ofApodemia mormo: Factors Beyond the Host Plant. Journal of the Lepidopterists' Society, 2014, 68, 54-60.	0.2	1
70	Resource availability and repeated defoliation mediate compensatory growth in trembling aspen (<i>Populus tremuloides</i>) seedlings. PeerJ, 2014, 2, e491.	2.0	19
71	Fungal species assemblages associated with Phytophthora ramorum-infected coast live oaks following bark and ambrosia beetle colonization in northern California. Forest Ecology and Management, 2013, 291, 30-42.	3.2	32
72	Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytologist, 2013, 197, 586-594.	7.3	65

#	Article	IF	CITATIONS
73	The Lodgepole × Jack Pine Hybrid Zone in Alberta, Canada: A Stepping Stone for the Mountain Pine Beetle on its Journey East Across the Boreal Forest?. Journal of Chemical Ecology, 2013, 39, 1209-1220.	1.8	32
74	Mountain Pine Beetles Colonizing Historical and NaÃ ⁻ ve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism. Applied and Environmental Microbiology, 2013, 79, 3468-3475.	3.1	236
75	Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana). Tree Physiology, 2012, 32, 946-957.	3.1	51
76	The Push-Pull Tactic for Mitigation of Mountain Pine Beetle (Coleoptera: Curculionidae) Damage in Lodgepole and Whitebark Pines. Environmental Entomology, 2012, 41, 1575-1586.	1.4	34
77	The Impact of Phloem Nutrients on Overwintering Mountain Pine Beetles and Their Fungal Symbionts. Environmental Entomology, 2012, 41, 478-486.	1.4	41
78	First Observations of Mormon Metalmark (Apodemia mormo) Oviposition Behaviour in Canada. Canadian Field-Naturalist, 2012, 126, 34.	0.1	3
79	Population dynamics in changing environments: the case of an eruptive forest pest species. Biological Reviews, 2012, 87, 34-51.	10.4	127
80	Areaâ€wide application of verbenoneâ€releasing flakes reduces mortality of whitebark pine <i>Pinus albicaulis</i> caused by the mountain pine beetle <i>Dendroctonus ponderosae</i> . Agricultural and Forest Entomology, 2012, 14, 367-375.	1.3	20
81	Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles. PLoS ONE, 2011, 6, e18274.	2.5	30
82	Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera:) Tj ETQq0 0 216-224.	0 rgBT /Ove 0.8	erlock 10 Tf 5 19
83	Effect of Water Stress and Fungal Inoculation on Monoterpene Emission from an Historical and a New Pine Host of the Mountain Pine Beetle. Journal of Chemical Ecology, 2011, 37, 1013-1026.	1.8	47
84	Inter-species interactions and ecosystem effects of non-indigenous invasive and native tree-killing bark beetles. Biological Invasions, 2011, 13, 1151-1164.	2.4	30
85	Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia, 2011, 167, 691-699.	2.0	36
86	Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal associate. Ecological Entomology, 2011, 36, 425-434.	2.2	21
87	Role of stressed mango host conditions in attraction of and colonization by the mango bark beetle <i>Hypocryphalus mangiferae</i> Stebbing (Coleoptera: Curculionidae: Scolytinae) and in the symptom development of quick decline of mango trees in Pakistan. Entomological Research, 2010, 40, 316-327.	1.1	19
88	The ecological interaction of the mountain pine beetle and jack pine budworm in the boreal forest. Forestry Chronicle, 2010, 86, 766-774.	0.6	11
89	Fertilization of lodgepole pine trees increased diameter growth but reduced root carbohydrate concentrations. Forest Ecology and Management, 2010, 260, 1914-1920.	3.2	8
90	Bark beetleâ€mediated fungal infections of susceptible trees induce resistance to subsequent infections in a dose dependent manner. Agricultural and Forest Entomology, 2009, 11, 255-263.	1.3	11

#	Article	IF	CITATIONS
91	Aerially applied methylcyclohexenone-releasing flakes protect Pseudotsuga menziesii stands from attack by Dendroctonus pseudotsugae. Forest Ecology and Management, 2009, 257, 1231-1236.	3.2	21
92	Aerially applied verbenone-releasing laminated flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho. Forest Ecology and Management, 2009, 257, 1405-1412.	3.2	47
93	GC-EAD responses to semiochemicals by eight beetles in the subcortical community associated with Monterey pine trees in coastal California: similarities and disparities across three trophic levels. Chemoecology, 2008, 18, 243-254.	1.1	18
94	Attraction of ambrosia and bark beetles to coast live oaks infected by <i>Phytophthora ramorum</i> . Agricultural and Forest Entomology, 2008, 10, 315-321.	1.3	27
95	Acetophenone superior to verbenone for reducing attraction of western pine beetle <i>Dendroctonus brevicomis </i> to its aggregation pheromone. Agricultural and Forest Entomology, 2008, 10, 433-441.	1.3	17
96	Temporal variation in contamination of pine engraver beetles with <i>Fusarium circinatum</i> in native Monterey pine forests in California. Plant Pathology, 2008, 57, 1103-1108.	2.4	13
97	Overstory and shrub effects on natural regeneration processes in native Pinus radiata stands. Forest Ecology and Management, 2007, 240, 178-185.	3.2	26
98	A host monoterpene influences lps typographus (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone. Agricultural and Forest Entomology, 2007, 9, 135-140.	1.3	67
99	Acetophenone as an Anti-attractant for the Western Pine Beetle, Dendroctonus Brevicomis LeConte (Coleoptera: Scolytidae). Journal of Chemical Ecology, 2007, 33, 817-823.	1.8	38
100	Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiological and Molecular Plant Pathology, 2006, 68, 95-104.	2.5	132
101	Response to Host Volatiles by Native and Introduced Populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. Journal of Chemical Ecology, 2006, 33, 131-146.	1.8	57
102	Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia, 2006, 148, 426-436.	2.0	157
103	Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?. Oecologia, 2005, 146, 365-372.	2.0	38
104	Colonization of cut branches of five coniferous hosts of the pitch canker fungus by <i>Pityophthorus</i> spp. (Coleoptera: Scolytidae) in central, coastal California. Canadian Entomologist, 2005, 137, 337-349.	0.8	9
105	Interactions Among Conifer Terpenoids and Bark Beetles Across Multiple Levels of Scale: An Attempt to Understand Links Between Population Patterns and Physiological Processes. Recent Advances in Phytochemistry, 2005, 39, 79-118.	0.5	118
106	Attraction of <l>lps pini</l> (Coleoptera: Scolytinae) and Its Predators to Natural Attractants and Synthetic Semiochemicals in Northern California: Implications for Population Monitoring. Environmental Entomology, 2004, 33, 1554-1561.	1.4	21
107	Intraguild interactions between generalist predators and an introduced parasitoid of Glycaspis brimblecombei (Homoptera: Psylloidea). Biological Control, 2004, 31, 329-337.	3.0	30
108	Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: implications for pest management and ecology of bark beetles. Agricultural and Forest Entomology, 2003, 5, 269-274.	1.3	95

#	Article	IF	CITATIONS
109	Spatial analysis of forest gaps resulting from bark beetle colonization of red pines experiencing belowground herbivory and infection. Forest Ecology and Management, 2003, 177, 145-153.	3.2	12
110	Attraction of <i>Ips pini</i> (Coleoptera: Scolytidae) and Its Predators to Various Enantiomeric Ratios of Ipsdienol and Lanierone in California: Implications for the Augmentation and Conservation of Natural Enemies. Environmental Entomology, 2003, 32, 1115-1122.	1.4	22
111	Population Dynamics oflps piniandlps grandicollisin Red Pine Plantations in Wisconsin: Within- and Between-Year Associations with Predators, Competitors, and Habitat Quality. Environmental Entomology, 2002, 31, 1043-1051.	1.4	46
112	Association of declining red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. Forest Ecology and Management, 2002, 164, 221-236.	3.2	60
113	Modulation of predator attraction to pheromones of two prey species by stereochemistry of plant volatiles. Oecologia, 2001, 127, 444-453.	2.0	75
114	Kairomonal range of generalist predators in specialized habitats: responses to multiple phloeophagous species emitting pheromones vs. host odors. Entomologia Experimentalis Et Applicata, 2001, 99, 205-210.	1.4	37
115	Trap Type, Chirality of α-Pinene, and Geographic Region Affect Sampling Efficiency of Root and Lower Stem Insects in Pine. Journal of Economic Entomology, 2001, 94, 1113-1121.	1.8	34
116	Title is missing!. Journal of Chemical Ecology, 2000, 26, 823-840.	1.8	39
117	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2527-2548.	1.8	75