
Monique J Rivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352639/publications.pdf Version: 2024-02-01

MONIOUE L RIVERA

#	Article	IF	CITATIONS
1	Assessment of renewable compounds as biopesticides for Asian citrus psyllid, Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae) Journal of Pest Science, 2023, 96, 663-670.	3.7	1
2	Choice behavior of the generalist pentatomid predator Podisus maculiventris when offered lepidopteran larvae infected with an entomopathogenic fungus. BioControl, 2022, 67, 201-211.	2.0	2
3	Wind Speed and Direction Drive Assisted Dispersal of Asian Citrus Psyllid. Environmental Entomology, 2022, 51, 305-312.	1.4	8
4	Foliar Sprays to Control Asian Citrus Psyllid, 2020. Arthropod Management Tests, 2021, 46, .	0.1	2
5	High Temperatures Decrease the Flight Capacity of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects, 2021, 12, 394.	2.2	15
6	Impacts of invasive ant-hemipteran interaction, edge effects and habitat complexities on the spatial distribution of ants in citrus orchards. Agriculture, Ecosystems and Environment, 2021, 310, 107299.	5.3	8
7	Beyond Position Statements: Advancing Inclusivity in Entomology by Funding Undergraduate Researchers. American Entomologist, 2021, 67, 48-51.	0.2	0
8	Cold acclimation increases Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) survival during exposure to freezing temperatures. Insect Science, 2021, , .	3.0	4
9	In Vitro Effects of Leaf Extracts from Brassica rapa on the Growth of Two Entomopathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 779.	3.5	2
10	Population Fluctuations of Diaphorina citri and Its Natural Enemies in Response to Various Management Practices in Florida. Florida Entomologist, 2021, 104, .	0.5	2
11	White and red-dyed kaolin particle films reduce Asian citrus psyllid populations, delay huanglongbing infection, and increase citrus growth. Crop Protection, 2021, 150, 105792.	2.1	10
12	Impact of Foliar Application of Acibenzolar S-Methyl on Rose Rosette Disease and Rose Plant Quality. Plant Disease, 2021, , .	1.4	2
13	Assessment of Variation in Feeding Behavior by Color Morph in the Asian citrus Psyllid (Diaphorina) Tj ETQq1 1 C	0.784314 r 0.7	gBT /Overloci
14	Verbenone reduces landing of the redbay ambrosia beetle, vector of the laurel wilt pathogen, on live standing redbay trees. Agricultural and Forest Entomology, 2020, 22, 83-91.	1.3	13
15	Use of Semiochemicals for the Management of the Redbay Ambrosia Beetle. Insects, 2020, 11, 796.	2.2	8
16	Foraging behavior responses of Orius insidiosus to thrips cues. Entomologia Experimentalis Et Applicata, 2020, 168, 716-722.	1.4	6
17	A Multimodal Attract-and-Kill Device for the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae). Insects, 2020, 11, 870.	2.2	10
18	Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Scientific Reports, 2020, 10, 2670.	3.3	23

Monique J Rivera

#	Article	IF	CITATIONS
19	Distribution, Phenology, and Overwintering Survival of Asian Citrus Psyllid (Hemiptera: Liviidae), in Urban and Grove Habitats in North Florida. Journal of Economic Entomology, 2020, 113, 1080-1087.	1.8	8
20	First Report of Phyllocoptes fructiphilus Keifer (Eriophyidae), the Vector of the Rose Rosette Virus, in Florida, USA. Florida Entomologist, 2020, 103, .	0.5	6
21	Sampling for Estimating Frankliniella Species Flower Thrips and Orius Species Predators in Field Experiments. Journal of Visualized Experiments, 2019, , .	0.3	Ο
22	â€~Tuning' communication among four trophic levels of the root biome to facilitate biological control. Biological Control, 2019, 131, 49-53.	3.0	9
23	Phenology, Distribution, and Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in North Florida's Pastures and Forests. Environmental Entomology, 2019, 48, 847-855.	1.4	9
24	Dispersal behaviour of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae) in avocado groves and estimation of lure sampling range. Agricultural and Forest Entomology, 2019, 21, 199-208.	1.3	19
25	Response of Diaphorina citri (Hemiptera: Liviidae) to volatiles characteristic of preferred citrus hosts. Arthropod-Plant Interactions, 2019, 13, 367-374.	1.1	11
26	Ladybird beetle trails reduce host acceptance by Diaphorina citri Kuwayama (Hemiptera: Liviidae). Biological Control, 2018, 121, 30-35.	3.0	6
27	Trail Chemicals of the Convergens Ladybird Beetle, Hippodamia convergens, Reduce Feeding and Oviposition by Diaphorina citri (Hemiptera: Psyllidae) on Citrus Plants. Journal of Insect Behavior, 2018, 31, 298-308.	0.7	6
28	Effects of Wind, Temperature, and Barometric Pressure on Asian Citrus Psyllid (Hemiptera: Liviidae) flight behavior. Journal of Economic Entomology, 2018, 111, 2570-2577.	1.8	17
29	Patterns of habitat use by the Asian citrus psyllid,Diaphorina citri, as influenced by abiotic and biotic growing conditions. Agricultural and Forest Entomology, 2017, 19, 171-180.	1.3	6
30	Flight Capacities and Diurnal Flight Patterns of the Ambrosia Beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). Environmental Entomology, 2017, 46, 729-734.	1.4	13
31	The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. Journal of Chemical Ecology, 2017, 43, 519-531.	1.8	30
32	Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri. Journal of Invertebrate Pathology, 2017, 148, 94-101.	3.2	26
33	Drought stress affects response of phytopathogen vectors and their parasitoids to infection―and damageâ€induced plant volatile cues. Ecological Entomology, 2017, 42, 721-730.	2.2	26
34	Bacterial phytopathogen infection disrupts belowground plant indirect defense mediated by tritrophic cascade. Ecology and Evolution, 2017, 7, 4844-4854.	1.9	7
35	Influence of Abiotic Factors on Flight Initiation by Asian Citrus Psyllid (Hemiptera: Liviidae). Environmental Entomology, 2017, 46, 369-375.	1.4	20
36	Lethal and sub-lethal effects of a novel sulfoximine insecticide, sulfoxaflor, against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions. International Journal of Pest Management, 2017, 63, 299-308.	1.8	13

Monique J Rivera

#	Article	IF	CITATIONS
37	A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators. Chemoecology, 2017, 27, 199-206.	1.1	11
38	Male Psyllids Differentially Learn in the Context of Copulation. Insects, 2017, 8, 16.	2.2	21
39	Repellent Activity of Botanical Oils against Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 2016, 7, 35.	2.2	13
40	Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens. Journal of Chemical Ecology, 2016, 42, 357-367.	1.8	29
41	Factors Affecting the Overwintering Abundance of the Asian Citrus Psyllid (Hemiptera: Liviidae) in Florida Citrus (Sapindales: Rutaceae) Orchards. Florida Entomologist, 2016, 99, 178-186.	0.5	21
42	Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field. Journal of Chemical Ecology, 2016, 42, 1259-1264.	1.8	5
43	Cultivation and domestication of highbush blueberry (Vaccinium corymbosum) alters abundance, diversity and virulence of entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 2016, 222, 148-155.	5.3	7
44	The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri. PLoS ONE, 2016, 11, e0149815.	2.5	29
45	Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal. PLoS ONE, 2015, 10, e0129373.	2.5	81
46	Assessing the impact of cultivation and plant domestication of highbush blueberry (Vaccinium) Tj ETQq0 0 0 rgBT and Biochemistry, 2015, 88, 25-28.	Overlock 8.8	10 Tf 50 38
47	Absence of windbreaks and replanting citrus in solid sets increase density of Asian citrus psyllid populations. Agriculture, Ecosystems and Environment, 2015, 212, 168-174.	5.3	27
48	Attraction of Redbay Ambrosia Beetle, Xyleborus Glabratus, To Leaf Volatiles of its Host Plants in North America. Journal of Chemical Ecology, 2015, 41, 613-621.	1.8	30
49	Seasonal Movement Patterns and Long-Range Dispersal of Asian Citrus Psyllid in Florida Citrus. Journal of Economic Entomology, 2015, 108, 3-10.	1.8	111
50	Synthetic blends of volatile, phytopathogen-induced odorants can be used to manipulate vector behavior. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	35
51	Abdominal Color of the Asian Citrus Psyllid (Hemiptera: Liviidae) is Associated with Flight Capabilities. Annals of the Entomological Society of America, 2014, 107, 842-847.	2.5	62
52	Volatiles from the symbiotic fungus <i>Raffaelea lauricola</i> are synergistic with Manuka lures for increased capture of the Redbay ambrosia beetle <i>Xyleborus glabratus</i> . Agricultural and Forest Entomology, 2014, 16, 87-94.	1.3	47
53	Plant volatiles and density-dependent conspecific female odors are used by Asian citrus psyllid to evaluate host suitability on a spatial scale. Arthropod-Plant Interactions, 2014, 8, 453-460.	1.1	47
54	Occurrence of <i>Diaphorina citri</i> (Hemiptera: Liviidae) in an Unexpected Ecosystem: The Lake Kissimmee State Park Forest, Florida. Florida Entomologist, 2013, 96, 658-660.	0.5	29

#	Article	IF	CITATIONS
55	Positive association between thrips and spider mites in seedling cotton. Agricultural and Forest Entomology, 2013, 15, 197-203.	1.3	6
56	Host utilization is mediated by movement of preâ€feeding <i><scp>P</scp>hthorimaea operculella</i> larvae in the <i><scp>N</scp>icotiana tabacum</i> agroecosystem. Entomologia Experimentalis Et Applicata, 2012, 145, 153-161.	1.4	5