
Lingyao Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2352385/publications.pdf Version: 2024-02-01

LINCYAO ZENC

#	Article	IF	CITATIONS
1	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	21.4	2,054
2	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	21.4	571
3	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	21.4	552
4	Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	27.0	427
5	Genetically Determined Height and Coronary Artery Disease. New England Journal of Medicine, 2015, 372, 1608-1618.	27.0	220
6	Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metabolism, 2017, 25, 248-261.	16.2	161
7	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	2.8	147
8	Genetic Risk Score for CoronaryÂDiseaseÂldentifies Predispositions to Cardiovascular andÂNoncardiovascular Diseases. Journal of the American College of Cardiology, 2019, 73, 2932-2942.	2.8	58
9	Identifying Novel Gene Variants in Coronary Artery Disease and Shared Genes With Several Cardiovascular Risk Factors. Circulation Research, 2016, 118, 83-94.	4.5	52
10	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
11	Contribution of Gene Regulatory Networks to Heritability of CoronaryÂArtery Disease. Journal of the American College of Cardiology, 2019, 73, 2946-2957.	2.8	45
12	Genetically modulated educational attainment and coronary disease risk. European Heart Journal, 2019, 40, 2413-2420.	2.2	32
13	No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis. Scientific Reports, 2016, 6, 35278.	3.3	25
14	Genetics links between transforming growth factor Î ² pathway and coronary disease. Atherosclerosis, 2016, 253, 237-246.	0.8	21
15	Genetically determined intelligence and coronary artery disease risk. Clinical Research in Cardiology, 2021, 110, 211-219.	3.3	19
16	SyStemCell: A Database Populated with Multiple Levels of Experimental Data from Stem Cell Differentiation Research. PLoS ONE, 2012, 7, e35230.	2.5	13
17	Rheumatoid Arthritis and Coronary Artery Disease: Genetic Analyses Do Not Support a Causal Relation. Journal of Rheumatology, 2017, 44, 4-10.	2.0	9
18	Effects of the coronary artery disease associated LPA and 9p21 loci on risk of aortic valve stenosis. International Journal of Cardiology, 2019, 276, 212-217.	1.7	9

LINGYAO ZENG

#	Article	IF	CITATIONS
19	Common APOC3 variants are associated with circulating ApoC-III and VLDL cholesterol but not with total apolipoprotein B and coronary artery disease. Atherosclerosis, 2020, 311, 84-90.	0.8	9
20	Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. European Journal of Epidemiology, 2020, 35, 685-697.	5.7	9
21	Genetics of educational attainment and coronary risk in Mendelian randomization studies. European Heart Journal, 2020, 41, 894-895.	2.2	5
22	Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk. PLoS ONE, 2017, 12, e0182999.	2.5	5
23	J-shaped association between circulating apoC-III and cardiovascular mortality. European Journal of Preventive Cardiology, 2022, 29, e68-e71.	1.8	2
24	Genetic and functional interaction of the coronary artery disease risk gene ADAMTS7 with LDL-cholesterol. Atherosclerosis, 2017, 263, e34.	0.8	0